Current challenges in testing methods for IoT solutions

Miroslav Bures
Czech Technical University in Prague
Czech Republic

QRS 2017 Prague
March 25th 2017
Program of this session

• Current challenges in IoT quality – a global view.
 • *Which aspects in IoT are considered the most challenging?*

• A recent survey in Czech industry IoT providers
 • *Which methods/tools the industry needs for ensuring quality of IoT solutions?*

• What do you consider as a priority in IoT quality in accord to your experience?
 • *A short discussion and experience sharing*

• Preliminary results of a literature mapping study in IoT QA
 • *What is being researched currently?*
 • *Which areas we consider as not covered yet?*

• A short introduction to “QA Framework for IoT solutions project”
Current challenges in IoT quality
Security

Features of IoT solutions
• Demand to lower prices of IoT devices
• Pressure to shorten time to market
• Updates of IoT devices online can be impossible
• Energy consumption issues → lightweight security algorithms
• Number of links between devices grows
• User can have low insight into internal mechanism of a device
• If a device is updated, user can have low control about the updates
• Some devices in places, where can be easily accessed by attacker
• IoT devices connected to whole internet
• IoT devices with voice recognition / embedded cameras
• Home-made devices not implementing industry standards

Consequences
• Possible security problems of IoT devices
• IoT devices can serve as a weakpoint to get to whole network
Issue 1: IoT device as a weak entry point to network

- **Demand to lower prices**
- **Demand to shorten time to market**

- **Limited update of devices**
- **Lightweight security algorithms**
- **Vulnerable to attacker**
- **Difficult to detect a violation**

- **Energy supply limits**
- **Geographical location**

- **User's reluctance to update**
- **Can act as entry point to network**

- **Part of global network**
- **Number of links between devices grow**
Issue 2: IoT device violating user's privacy

- User can have low insight into internal mechanism of a device
- User can have low control of the updates
- Possible misuse by manufacturer
- Possibly vulnerable to attacker
- Legislation being developed
- User's reluctance to update
- Part of global network
- Number of links between devices grow
Privacy

Features of IoT solutions

• Various personal data can be collected
• Legislative issues being discussed in parallel with technology development
• Part of IoT devices don't have interface to accept contractual conditions
• Local legislations vs. global solution

Consequences

• Opportunities to misuse of personal data are increasing
• Low user's insight into data privacy mechanism
• Possible user's digital portrait reconstruction
• Division between public and private space can become less strict
• Would there be services available for the users who don't accept data collection?
Data being collected

Current web/mobile cloud applications:

- User's interest – browsing history
- Online shopping
- Geolocation

IoT can add more:

- Personal health information
- Eating habits
- Voice recognition
- Image recognition
- More detailed geolocation
Interoperability

Features of IoT solutions
• Various protocols used – IPv6, Bluetooth, ZigBee, proprietary industry protocols, ...
• Updates of IoT devices online can be impossible → number of versions grows
• Intentional "vendor lockout" is also possible

Consequences
• A combinational explosion of various devices and protocols to test
• Increased demand to integration testing
• Testing requirements spans also to hardware and protocols (in Internet, we consider them tested already)
Reliability of service

Features of IoT solutions
• Dependency of user to the network service grows
• Users get used to the service and their demands for service availability continuously grow

Consequences
• We need to test more intensely:
 • Behaviour of IoT solution under limited connection
 • Transactionality of the applications, resp. failover management
Heterogeneity

What is IoT?
• Various possible applications and architectures are in place: sensor networks, smart cars with sharing, whitegood connected to web, personal devices, ...

Consequences
• Is it possible to generalize a IoT specific testing methodology?
A survey among the Czech IoT industry
Challenging quality aspects

Which of the quality aspects of the IoT do you consider the most challenging?

1. Security issues
2. Privacy issues
3. Performance issues
4. Interoperability, missing or insufficient standards, proprietary standards vs. internet standards
5. Legislation issues
6. Behavior of the system under limited network connection
7. Integration issues
8. Number of various configurations and types of the end nodes, making the solution hard to test om all these combinations
9. Focusing of test efforts efficiently to important aspects and critical parts of the infrastructure
Challenging quality aspects

<table>
<thead>
<tr>
<th></th>
<th>#1 Security</th>
<th>#2 Privacy</th>
<th>#3 Performance</th>
<th>#4 Interoperability</th>
<th>#5 Legislation</th>
<th>#6 Limited connection</th>
<th>#7 Integration</th>
<th>#8 Configurations</th>
<th>#9 Test effort focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Smart cars</td>
<td>White Goods</td>
<td>Smart TVs</td>
<td>Infrastructure</td>
<td>Infrastructure</td>
<td>R&D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>HIGH</td>
<td>LOW</td>
<td>MEDIUM</td>
<td>HIGH</td>
<td>HIGH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>MEDIUM</td>
<td>MEDIUM</td>
<td>MEDIUM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>HIGH</td>
<td>MEDIUM</td>
<td>HIGH</td>
<td>MEDIUM</td>
<td>LOW</td>
<td>HIGH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>MEDIUM</td>
<td>HIGH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MEDIUM</td>
<td>LOW</td>
<td>MEDIUM</td>
<td>HIGH</td>
<td>LOW</td>
<td>HIGH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>HIGH</td>
<td>HIGH</td>
<td>MEDIUM</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>HIGH</td>
<td>LOW</td>
<td>MEDIUM</td>
<td>MEDIUM</td>
<td>MEDIUM</td>
<td>HIGH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>MEDIUM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>HIGH</td>
<td>LOW</td>
<td>HIGH</td>
<td>HIGH</td>
<td>MEDIUM</td>
<td>HIGH</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenging quality aspects

<table>
<thead>
<tr>
<th>company/business</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smart cars</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>White Goods</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>Smart TVs</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Limited connection</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Interoperability</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Privacy</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Security</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Test effort focus</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Performance</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>Integration</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Legislation</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>12</td>
</tr>
</tbody>
</table>
Demands for testing methods

Which principal parts of QA methodology for IoT you need the most?

1. **Test strategy guidelines**
2. **Prioritization mechanism** and way to determine intensity of testing efficiently
3. **Specific test design techniques** reflecting specifics of IoT allowing to create efficient test case scenarios
4. Guidelines, **which parts of the tests to automate** and how
5. Mechanism for **automated generation of test cases** specifically tailored for IoT solution
6. Framework for **efficient automated integration testing** of the IoT solution
7. Set of **integration mockups** and connectors to handle various IoT devices during IoT testing
8. Support of **Continuous Integration process** for development of IoT solutions
9. Semi-automated or **automated reporting** mechanism for test results
Demands for testing methods

<table>
<thead>
<tr>
<th></th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test strategy</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>Test prioritization</td>
<td>HIGH</td>
<td>MEDIUM</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Test design techniques</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>MEDIUM</td>
<td>MEDIUM</td>
<td>HIGH</td>
</tr>
<tr>
<td>What to automate</td>
<td>MEDIUM</td>
<td>HIGH</td>
<td>HIGH</td>
<td>MEDIUM</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
<tr>
<td>Automated gen. of TCs</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Aut. integration tests</td>
<td>MEDIUM</td>
<td>HIGH</td>
<td>HIGH</td>
<td>LOW</td>
<td>MEDIUM</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Integration mockups</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>HIGH</td>
<td>MEDIUM</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>CI compliance</td>
<td>MEDIUM</td>
<td>HIGH</td>
<td>HIGH</td>
<td>LOW</td>
<td>MEDIUM</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Automated reporting</td>
<td>MEDIUM</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>MEDIUM</td>
<td>HIGH</td>
</tr>
</tbody>
</table>
Demands for testing methods

<table>
<thead>
<tr>
<th>#</th>
<th>company/business</th>
<th>#1 Smart cars</th>
<th>#2 White Goods</th>
<th>#3 Smart TVs</th>
<th>#4 Infrastructure</th>
<th>#5 Infrastructure</th>
<th>#6 R&D</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Test strategy</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>Test prioritization</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>Test design techniques</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>What to automate</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>Automated gen. of TCs</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>Aut. integration tests</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>CI compliance</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>Integration mockups</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>
What you consider as a priority?

(a discussion)
Challenging quality aspects

Which of the quality aspects of the IoT do you consider the most challenging?
1. Security issues
2. Privacy issues
3. Performance issues
4. Interoperability, missing or insufficient standards, proprietary standards vs. internet standards
5. Legislation issues
6. Behavior of the system under limited network connection
7. Integration issues
8. Number of various configurations and types of the end nodes, making the solution hard to test om all these combinations
9. Focusing of test efforts efficiently to important aspects and critical parts of the infrastructure

Are there any other challenges by your experience?
Demands for testing methods

Which principal parts of QA methodology for IoT you need the most?

1. **Test strategy guidelines**
2. **Prioritization mechanism** and way to determine intensity of testing efficiently
3. **Specific test design techniques** reflecting specifics of IoT allowing to create efficient test case scenarios
4. Guidelines, *which parts of the tests to automate* and how
5. Mechanism for **automated generation of test cases** specifically tailored for IoT solution
6. Framework for **efficient automated integration testing** of the IoT solution
7. Set of **integration mockups** and connectors to handle various IoT devices during IoT testing
8. Support of **Continuous Integration process** for development of IoT solutions
9. Semi-automated or **automated reporting** mechanism for test results
Other possible QA challenges?

1. Quality of big data processes?
2. Usability testing?
State of the art
Research challenges
Current literature survey

Databases searched:
1. Springer
2. Elsevier
3. ACM
4. IEEE
5. Scopus

Approx. 600 papers analyzed

After filtering by relevance and present results – approximate numbers:
- Secure architectures: 180
- Privacy and trust: 80
- Opinion papers: 60
- Security testing: 50
- QA and testing: 50
- Testbeds: 45
- General about security: 40
- Quality and security challenges: 15
- Performance: 10

From currently ongoing study, results shall not be present in the final slides published on workshop web.
QA in IoT publication trends

Publication Number

Year of Publication

4 4 17 43 52 75 126 265
QA in IoT publication trends
Areas identified:
• Challenges
• General testing lifecycle

• Model-based testing
• Model checking
• Run-time verification

• Reliability models

• Testing of protocols
• Simulation of the devices

• Test Beds and Testing Frameworks

• Usability testing

• Performance testing
Research opportunities

Discussion:

CIT using the Feature Models for IoT

Workflow (graph paths-based MBT) tailored to IoT reliability specifics

Extension of SUT models to network and physical layer

Technical background for well orchestrated integration testing
QA Framework for IoT solutions project
Project goal

To develop an efficient framework for IoT quality assurance

- Respecting specifics of IoT domain
- Focusing on variety of platforms problem
- Strongly focused on test automation: give manual work to machines
- Model-based testing focused: don't waste one day thinking about the test cases – model the situation one hour instead and let the machine work
- Based on strong know-how and best practices in the QA domain
- Compliant to CI principles
The IoT QA framework

Methods part

• Setting the efficient test strategy
• Determining optimal intensity of testing for various IoT system parts
• Automating the creation of test cases
• Assessing an optimal level and types of test automation

Technical part

• Enhanced JUnit based framework for IoT specific integration testing
• Efficient mock-ups and simulators for specific IoT devices
• CI-compliant automated IoT testing framework and testbed
Project details

Project partners

- Czech Technical University in Prague
- RedHat Czech Republic

Timing

- 2017-2021

Industry and R&D parties welcomed to cooperate and share the project results
Contact

Miroslav Bures
STILL – Software Testing IntellLigent Lab
Dept. of Computer Science
FEE, Czech Technical University in Prague
miroslav.bures@fel.cvut.cz
http://still.felk.cvut.cz