The Internet of Things: The Story So Far

Payam Barnaghi and Amit Sheth
September 9, 2014

 

The combination of embedded technologies, wired and wireless communications and low cost sensing devices on the Internet make up the Internet of Things (IoT). With an expected 50 billion connected things by 2020, this has created huge interest. Predating the current situation in the IoT were RFID technologies for identifying real world objects, (wireless) sensor and actuator networks.

The most recent progress in IoT has resulted from industry and consumer market interest in connected sensing devices. Several products have been introduced for sports and activity monitoring, personal health monitoring (and the associated Quantified Self movement) and other consumer and retail markets. There is also a new trend of Internet and mobile software and services for monitoring and controlling personal devices and home appliances. However, these products rely on vertical and proprietary solutions that have limited interoperability with other devices and services.

Heterogeneous data and services

The IoT is evolving as a distributed, multi-vendor and multi-platform framework with heterogeneity at device, network, data and services levels. In the past few years there has been significant progress in standardising wireless communication technologies and providing efficient solutions for low power, resource-constrained IoT devices. The IETF Core standards and IPv6 over Low power Wireless Personal Area Networks (6LowPAN) and Constrained Application Protocol (CoAP) [1] are examples of these efforts. IoT data communication is becoming an integrated part of mobile communications and future generations of mobile communications and 5G networks are now being designed to support voice, text and multimedia data and also machine-to-machine communications and connection and control for IoT devices with constrained resources and intermittent data patterns. These standards and systems are increasingly being deployed in public and private sectors.

IoT research and development is now moving from infrastructure and baseline technology development, or early adoption of standalone solutions, towards the standardisation of solutions and the definition of common components and practices. However, heterogeneity at the semantic level still remains a key issue. To enable effective and automated data and service communication and interactions, data and services should be defined in common and interoperable formats. While the introduction of TCP/IP on Internet and HTTP protocols paved the way for the rapid growth of the Web and markup languages such as HTML allowed the publication of millions of pages on the Web, IoT needs its own specific or adapted and extended higher-level protocols and common formats to enable interoperability between various heterogeneous data and services. Several efforts in this area, such as the W3C Semantic Sensor Network Ontology (SSNO) [2] and HyperCat [3], have been introduced and SSNO has seen quite a few demonstrations and early adoption. However, these models need to be adapted and exploited by more products and services. There is also a need for software and development APIs to allow publishing, sharing and access based on common formats. Linking IoT data to other data on the Web and providing linked IoT data forms will also enhance the use and exploitation of the data and services. Access interfaces, query and discovery methods similar to those offered for the Internet and Web resources should be also provided in order for the IoT domain to make data and services widely accessible beyond internal IoT networks.

Actionable knowledge

The IoT is not about collecting and publishing data from the physical world but rather about providing knowledge and insights regarding objects (i.e., things), the physical environment, the human and social activities in the physical environments (as may be recorded by devices), and enabling systems to take action based on the knowledge obtained. In other words, raw IoT data is not what the IoT user wants; it is mainly about ambient intelligence and actionable knowledge enabled by real world and real time data [4]. Figure 1 shows the different waves of IoT development. As discussed above, it started with the RFID developments and is now mainly focused on physical-cyber-social data and integrated systems with various products and services and prototype models for data/service interoperability.

Figure 1

Figure 1. Different waves of IoT development

The IoT has become an integral part of many industry R&D units in large industries and there are growing numbers of start-ups and SMEs that focus their business models on IoT technologies. Some public sector areas have also taken a keen interest in using IoT technologies to provide better community services, healthcare, transport and environmental control and monitoring, among other applications. Several cities around the world now have plans to develop, or have already developed and exploited, IoT-based solutions in their smart city frameworks. Wearable technologies and smartphone and smart devices are driving the rapid growth and adaptation of IoT products and services in the consumer market. Industry solutions based on IoT are emerging, with some early adaptors in transportation, logistics and health. The IoT is already around us. It is not one solution or a unified technology; it involves several domains, various technologies and different coordinated and uncoordinated efforts to connect and exploit the Things’ data.

Future developments in the IoT domain are going to have a stronger focus on data and on extracting actionable knowledge and providing value-added services. This will depend on developing efficient and interoperable solutions across different platforms and various networks, and enabling semantic interoperability among various resources, data and services. Cloud-based back end services for the efficient integration, aggregation, interpretation and information extraction of multi-modal IoT data are crucial for future developments in the IoT domain. IoT data can be unreliable, incomplete and could have various qualities. The data is often time and location dependent and processing methods should be able to process and extract information from various multi-modal and real time streams and often in a (near) real time manner. This will require more adaptable and dynamic analytics solutions than the classic data mining and data analysis solutions.

Let us not forget that IoT enables the collection and dissemination of data from public and personal environments. So security, privacy and trust will always be core issues and considerations in many IoT applications and services. Industry will need service level agreements and new business models. The growing trend of social media and crowdsourcing has also enabled the concept of human sensors or ‘Citizen Sensing’ in which people use smart devices and social tools to report their observations and measurements from the physical world. Discovering, integrating and interpreting these various multi-modal physical-cyber-social streams, providing timely and sufficiently accurate and reliable insights and actionable knowledge from the data are among the key challenges. IoT solutions should consider resource and network characteristics and limitations (e.g., energy efficiency, latency), quality issues (e.g., quality of information and quality of services), and should provide global, scalable solutions that go beyond the vertical networks and offer reliable and dependable services and applications for both consumer and industry markets. Future IoT technologies need to be able to translate the deluge of dynamic and heterogeneous data from the large number of connected devices into situational awareness, actionable information and better decisions leading to improved productivity and better quality of life.

Acknowledgement

The authors are funded in part by the EU FP7 CityPulse project (Contract Number: CNECT-ICT-609035).

References

[1] Bormann, C.; Castellani, AP.; Shelby, Z., "CoAP: An Application Protocol for Billions of Tiny Internet Nodes," Internet Computing, IEEE, vol.16, no.2, pp.62-67, March-April 2012

[2] Compton; M., et al., "The SSN ontology of the W3C semantic sensor network incubator group", Journal of Web Semantics, 17, Dec. 2012

[3] HyperCat, available at: http://wiki.1248.io/doku.php?id=hypercat

[4] Barnaghi, P.; Sheth, A; Henson, C., "From Data to Actionable Knowledge: Big Data Challenges in the Web of Things," Intelligent Systems, IEEE, vol.28, no.6, pp.6-11, Nov/Dec. 2013

 


 

Payam BarnaghiPayam Barnaghi is a Lecturer (Assistant Professor) at the Institute for Communication Systems at the University of Surrey. He is technical coordinator of the EU FP7 CityPulse project (http://ict-citypulse.eu). His research interests include machine learning, Internet of Things, data analytics, semantic web, information centric networks, and information search and retrieval. Barnaghi has a PhD in Computer Science from University of Malaya. He is a senior member of IEEE.
Contact him at: p.barnaghi@surrey.ac.uk;
http://personal.ee.surrey.ac.uk/Personal/P.Barnaghi

 

amit-shethAmit Sheth is the LexisNexis Ohio Eminent Scholar and director of Kno.e.sis at Wright State University. His research interests include Web 3.0 (including the Semantic Web), semantics-empowered social Web, sensor Web, the Web of things, mobile computing, and cloud computing. Sheth has a PhD in computer and information science from Ohio State University. He is a fellow of IEEE.
Contact him at amit@knoesis.org; http://knoesis.org/amit

 

 

Comments

2014-09-09 @ 11:47 AM by Sheth, Amit

Ref. 4 gives lot more details and is at at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6733221 

2014-09-20 @ 8:42 AM by Babu M, Avinash

A nice and simple way of presenting IOT. Any ideas of what the development ecosystem supports presently?

2014-09-22 @ 6:02 AM by MAMAANI BARNAGHI, PAYAM

EU FP7 IoT project has developed an architecture reference model (ARM) for IoT: 

http://www.iot-a.eu/arm/

EU FP7 Open IoT project has an implementation of the ARM:  http://openiot.eu

In CityPulse, we are also developing open tools and components for IoT data analytics; some intial results are available at: 

http://www.ict-citypulse.eu/page/content/tools-and-software

 

 

2018-04-21 @ 5:20 AM by Ahmad, Hamza

in past two decades iot has chaneged very speedly providing different types of innovations with the addition of articfical intelligence like Amazon Go

The Internet of Things: A Title that is both Wrong and Unhelpful

William Webb
September 9, 2014

 

We have come to adopt the title Internet of Things (IoT) to describe the idea of connecting a myriad of machines such as smart meters, parking sensors, intelligent thermostats and much more. The “things” are a wide range of machines, sensors, devices and similar – broadly anything that involves electronics and would benefit from connectivity. The “Internet” is the idea that these will be inter-connected in a manner similar to the Internet.

The “classic” Internet is a means whereby any computing device can communicate sensibly with any other computing device regardless of location, both retrieving and sending information. So do we expect our “things” to have a similar functionality, with any “thing” being able to send and retrieve information from any other thing?

In practice, connected machines are quite different from connected people. Most machines have a very specific function such as measuring whether a car parking space is empty, or the location of a container. They then send this information to one fixed processing system or database. A smaller number of machines are sent commands, such as the information to display on an electronic signboard, but this information typically always comes from the same source point. The value of a machine talking direct to another machine is hard to perceive – why might a washing machine want to talk to a car park sensor?

Flexibility comes at a price

It could be argued that even if the required connectivity is almost invariably machine-to-database or vice versa, providing the flexibility of the Internet in allowing any machine to discover and communicate with any other machine will enable innovation and ensure the greatest degree of flexibility. But such flexibility comes at a price. It opens the door to a wide range of security and privacy concerns. For example, rogue commands sent to a connected fridge are not possible if the fridge only accepts commands from a single, authenticated source. It tends to increase message size due to the need for addressing mechanisms and in a world where IPv6 addresses are 128 bits long but many machine messages eight bits or less, the overhead is more than ten-fold. It requires much agreement on protocols, not just the IP stack but even up to aspects such as an agreement on whether temperature will be reported in Centigrade or Fahrenheit and so on. The need to handle more complex protocols may require more powerful processors and more memory in a low-cost device than an optimised solution, reducing battery life and making devices more prone to need re-booting or the machine-level equivalent.

There is much debate about what the first substantive IoT application will be. A strong contender is industrial automation. These are applications such as monitoring flow rates in water pipes, managing processing plants, automatically monitoring the security of perimeter fences, measuring the condition of roads and bridges and so much more. These applications typically have a clear business case based on productivity improvements or savings that can be made in operational costs. This makes their justification simple. Further, they do not require any kind of interoperability with other systems. The sensors will send information to the central database and this may issue commands to actuators. It does not matter if the solution for a water supplier is incompatible with that used by the electricity supplier or oil refinery. Coverage requirements may be quite discrete and easily met with a small deployment of base stations or repeater nodes.

Machine-to-database connectivity

Such applications are clearly not “Internets of Things”. At best they are “Intranets of Things” – closed communities where information can be exchanged. But even that description is suggesting greater functionality than needed. The system is really just machine-to-database connectivity. (The other term sometimes used for IoT of Machine-to-Machine (M2M) is equally misleading since one machine is not talking to another.) If we required such systems to have functionality that enabled openness it would result in substantial security concerns with unwanted individuals or rogue machines affecting critical industrial systems. Better never to provide this functionality in the first place rather than enabling it and then having to carefully and conclusively demonstrate that it had been sufficiently disabled.

As well as security concerns, many have fears over privacy issues related to the IoT. When there is little control over who can read data these are entirely valid. But in a machine-to-database world where personal information can only be sent to a single guarded database then it becomes easier to set up appropriate privacy safeguards. This is a critical issue – privacy concerns have derailed proposals such as identity cards and could delay or even prevent the introduction of the world of connected machines.

Machine-to-cloud

Perhaps we might see a genuine IoT connectivity solution being required when applications enter the consumer space? For example, might a smart thermostat such as the NEST connect directly to other sensors in the home such as temperature sensors and heating actuators? Even here, though, clearly it should not be able to connect to the heating actuators or even sensors in a different house. But a more flexible solution would have the thermostat connect to a cloud-based management system. This could then connect to the sensors, but also to a weather forecast, location information for the owners of the home and many other information sources that would be difficult for the thermostat to access directly. So a better architecture is machine-to-cloud, understanding that the cloud could be hosted locally on the home server or remotely. Devices such as fitness monitoring wearables equally should only connect to a single authenticated smart phone which can act as the local “cloud computing” server or could in turn relay information to a central cloud processor.

Perhaps this all seems rather pedantic. After all, the term IoT was probably coined more for its marketing value than its accuracy in describing the underlying connectivity. The term has also become very widely used and is unlikely to change any time soon. But the world of connected devices is very embryonic and not well understood and many players do read into the term “Internet” the idea that IP addressing and protocols should be adopted while others envisage the same problems and weaknesses that we have come to experience from the Internet. Replacing IoT with “Machine-to-Cloud” or M2Cloud might not be realistic, but at least having the debate around whether it is a more accurate descriptor would engage many in important discussions around the architectures and business cases for the deployment of what could be the most important underlying system to overcome the global challenges we face today.

 


 

William WebbWilliam Webb is CEO of the Weightless SIG, a body standardizing a new M2M technology and President-Elect of the IET. He was one of the founding directors of Neul, a company developing machine-to-machine technologies and networks, which was formed at the start of 2011. Prior to this William was a Director at Ofcom where he managed a team providing technical advice and performing research. He has worked for a range of communications consultancies and spent three years providing strategic management across Motorola’s entire communications portfolio, based in Chicago.

William has published 13 books, 100 papers, and 18 patents. He is a Visiting Professor at Surrey, Southampton and Trinity College Dublin Universities, a Fellow of the Royal Academy of Engineering, the IEEE and the IET. He can be contacted at wwebb@theiet.org.

 

 

Early IoT Applications Illustrate Emerging Trends

Chung-Sheng Li
September 9, 2014

 

The emerging Internet of Things (IoT) is often discussed as a phenomenon of the future, rather than as an enabler of current applications. Yet early applications in use today can provide a clear sense of the shape of things to come, if not the full gamut of possibilities.

Too often, in my view, the “full gamut of possibilities” blinds us to the IoT’s present capabilities. The notion that, if we connect a zillion “things”, applications will emerge may be true. But a more pragmatic approach would be to ask, which things should we connect, and to what end?

In this article, I’ll describe a few characteristics of the emerging IoT and then turn to several specific, current applications to bring the concepts, use cases and challenges into sharper focus. We shouldn’t lose sight of the fact that the purpose of connecting “things” is to aid our quest to understand the world around us in order to better adapt to it. Achieving this end will require an incremental, practical approach: domain-specific applications will arise first, and data science will connect them

Vertical domains, horizontal ties

The IoT, in my view, represents an interdisciplinary quest to understand and anticipate real-world behavior to provide us with a more efficient, convenient, safer, even anticipatory world.

How will this actually work? Here’s a vastly simplified picture: sensors will provide the data to construct and populate behavioral and/or structural models that reflect the world around us. Missing data will be interpolated from existing data based on the models. Using advanced processing capabilities, these models will then extrapolate the data to anticipate future behaviors and outcomes and simulate “what if” scenarios to assess various options for action. Actuators will carry out the desired actions. Eventually, with continuous iterations, these processes and models will become more sophisticated, enabling more accurate reflections of reality and longer-range predictions of our world’s likely behaviors. This, in turn, will create more viable and diverse options for our adaptive responses.

In domain-specific cases, such as weather forecasting, public health management and urban challenges such as traffic control, safety and crime prevention, which we’ll discuss here, these concepts are already being applied to achieve valuable outcomes.

IoT behavioral models for various vertical domains, such as the aforementioned examples, will eventually be connected, improved and expanded by the use of “horizontals,” i.e., domain commonalities such as the emerging field of data science. What can we learn when multiple domains are combined or juxtaposed and their causal relationships identified? Early IoT applications provide examples of possible outcomes.

I can offer one IoT mantra in this regard: the better the data, the better the model; the better the analysis, the better the predictions. The volume of data is less important than constructively leveraging the best data to build a better model.

The business case

Before we examine several IoT use cases, we should recognize that, in the short run, economics likely will drive the search for positive business cases in vertical domains. In fact, that effort is already underway as various companies across a diverse set of industries seek to monetize commercial advantages in this emerging field.

Yet using the IoT for the common good is a laudable goal. In some cases, IoT applications may be exempt from the pressure to determine a return on investment (RoI), particularly where the common good outweighs the need for a positive business case. As we shall see, mitigating disease outbreaks certainly falls in that category.

Real-world IoT applications

Now let’s consider three real-world IoT applications, from the familiar to the emergent, to put these ideas on a practical footing.

Weather prediction is a good example of a familiar IoT application that’s already widely in use. Sensors on the surface, in the ocean, in the air, in the outer atmosphere and in space all provide data on the variables that affect the weather. At first these weather models merely described present conditions. As they improved, however, we’ve been able to predict the weather many days in advance with a relatively high degree of confidence.

Another application with real-world consequences: predicting disease outbreaks. In 1993, the “Four Corners” area where Colorado, Utah, Arizona and New Mexico meet experienced an outbreak of Hantavirus Pulmonary Syndrome (HPS). Since that outbreak in 1993, about 606 people have been infected and about 36 percent of those people died over the past 20 years. HPS is a horrible disease; a patient in late stage HPS often exhibits shortness of breath as their lungs fill with fluid.

Scientists from several institutions including Johns Hopkins University and IBM worked together on a behavior model that can assess the potential risk of such an outbreak occurring at a certain location. The starting point of the model is climate-influenced weather. In this case, El Niño typically introduces heavy rain into the arid Southwest of the USA, causing substantial vegetation growth. Subsequently, La Niña reduces or stops the rainfall and desiccates the vegetation. Vegetation provides cover for rodents and, when the vegetation disappears, rodents have nowhere to hide but in human habitations. As it turned out, rodents are the primary carrier of hantavirus. The behavioral model developed for the spread of hantavirus depended on combining the weather model, the vegetation model and the rodent population model to gauge the impact on a structural model of where people actually live.

The result was a forecast that predicted areas with a high risk of a future outbreak of hantavirus with high confidence many months in advance.

Because many ailments fall into the vector-borne disease category – including malaria, West Nile encephalitis and Dengue Fever – this same methodology has been applied to build behavioral models for other, similar health threats as well. As our use of IoT concepts becomes increasingly sophisticated, we may develop other applications that offer advanced risk assessment for other disease outbreaks.

Big city traffic and crime control

Other IoT applications are more prosaic. To reduce inner city traffic, London has been using surveillance cameras to track and impose charges on vehicles entering the downtown area within the London Inner Ring Road since 2003. Crossing an invisible line into downtown triggers an automatic snapshot and recognition of a vehicle’s license plate. The system bills the car owner instantaneously and payment is required by end-of-day or a severe penalty is imposed. Stockholm also has implemented a similar approach since 2007.

In yet another application, New York City has surveillance cameras in downtown and midtown to detect, for instance, people who leave a bag unattended. In Los Angeles the police use surveillance cameras on their cars to scan the license plates of parked cars. If the license plate raises a red flag the police can take pre-emptive action.

So the IoT already has been used for weather, disease outbreaks, traffic control and crime fighting, even anti-terrorism – just a few applications among many in use or being developed.

Additional issues

This initial essay on the IoT obviously leaves out many topics deserving of more attention. Data science and closed-loop system design will continue to be subjects of concerted enquiry. Models and simulations must become more sophisticated. We need to explore the specific technology improvements in sensors, centralized and distributed processing and actuators that will be needed to advance the IoT. On the public policy front, what are the IoT’s implications for data security and privacy? The list of topics for further discussion is long.

At least one simple conclusion is warranted here. The futuristic-sounding IoT depends on many well-known technologies already in use. Thus the IoT is at once more tangible and practical than its name suggests, yet its applications remain largely unexplored and under-exploited.

 


 

Chung-Sheng LiChung-Sheng Li is currently the director of the Commercial Systems Department. He has been with IBM T.J. Watson Research Center since May 1990.

His research interests include cloud computing, security and compliance, digital library and multimedia databases, knowledge discovery and data mining, and data center networking. He has authored or coauthored more than 130 journal and conference papers and received the best paper award from IEEE Transactions on Multimedia in 2003. He is both a member of IBM Academy of Technology Leadership Team and a Fellow of the IEEE.

 

 

Comments

2014-10-30 @ 8:47 AM by Holland, Steven

Will you be posting your slides from your excellent webcast yesterday on ",

Orchestrating the Smarter Planet in the world of the Internet of Things"?

2014-10-30 @ 3:09 PM by Ayer, Renee

Hi Steven, Yes, we will share it on the IEEE IoT web portal:  http://iot.ieee.org/ along with a recording of the webinar.

Renee

The Fading Line between Atoms and Bits

Roberto Saracco
September 9, 2014

 

We have already started, and in the coming years more and more “Things” will be connected to the Internet, creating what we sometimes call the Internet of Things (IoT). There will be things with embedded electronics that will be connected directly to the Internet; others will be connected to nearby 'Things' that act as a gateway to the Internet.

Yet more will not have any electronics embedded, like my couch, but will nevertheless be connected to the Internet through a “Thing” that can watch it and communicate information about it (like a security camera “watching” my couch in the living room).

The crucial point is that this connection between a Thing and the Internet is basically transforming the Thing’s Atoms into Bits. And in the Internet the applications and people connected to those bits will be able to see a mirror image of the Thing and exploit it in many ways. In this article we will see the implication of these links among atoms and bits, and how our interaction with IoT will require, and lead, to new paradigms where semantics will become as important as connectivity.

A trillion connected objects

Let’s talk about Crock-Pot and June. The first is a slow cooking pot and June is a bracelet. They have in common the fact that both connect to the Internet (to a smartphone that in turn can connect to the Internet, or to another device that can bridge, via bluetooth or WiFi, the object with the Internet.

Now you may wonder why you would connect a cooking pot or a bracelet to a smartphone. Crock-Pot and Netatmo (the makers of the pot and bracelet) will explain why (be aware of how the cooking is doing, be aware of your level of sun exposure). But this is not the point.

The point is that every possible device is getting connected to the Internet and once this becomes widespread I bet there will be thousands of ingenious people around the world who will be able to make sense out of it for you.

Connecting something to the Internet used to be expensive and made sense only if there was a very specific need for doing so. Not any longer. A communication chip can cost less than a dollar, and electronic identification can cost less than one cent. As communications become ever more pervasive the communication link (the distance to a gateway) gets cheaper also in terms of energy requirements. This brings communication electronics to any kind of device. As a matter of fact, energy requirements are getting so low that scavenging of ambient energy suffices in many cases, removing the need for a battery (thus further slashing cost).

Scavenging technologies come in many forms: they can leverage on vibrations (a sensor embedded in the tarmac can power itself from the vibration generated by passing vehicles), they can leverage on temperature differential (a band aid on your arm can exploit the difference in temperature of your skin and the surrounding air), they can exploit piezoelectric properties of materials (a pacemaker embedded in your chest can be powered by the breathing movements of your pectoral muscles), they can leverage on ambient radio frequency (like RFID tags).

By the end of this decade some predict more than fifty billion objects connected to the Internet (Cisco, Ericsson), others foresee over one trillion objects connected to the Internet (HP). That is a factor of 20! Well it really depends on how you view being connected to the Internet. If you consider as “connected” only those objects that have a direct connection to the Internet perhaps the lower figure is appropriate (although I would still consider it a bit on the low side) but if you also start considering as connected “things” that are communicating with cellphones (by the way inside a smartphone you have a compass, an accelerometer, a light sensor, a NFC sensor, a fingerprint sensor, two digital cameras, a SIM card: that already makes seven plus the cellphone itself; five billion smartphones in 2020 times eight already makes 40 billion things connected to the Internet!), or with other kinds of gateways (like a passing car, a beacon …) you see immediately that the one trillion figure is not out of range.

In the coming years we are likely to see electronics embedded in any kind of object (80% of toys today embed electronic components) and in a few more years any material being produced will embed electronics, be it tiles you lay on your floor or wallpaper on your walls (they already exist and I’ve seen them in a few hotel rooms), or pills you swallow; buildings as well as streets and light poles will embed electronics, cars already have 40% of their Bill of Materials (BoM) in electronics (and for top of the line cars the electronics BoM goes up to 60%).

We can take this for granted: electronics will be part of any object and that electronics will support connectivity. In those rare cases where no electronics is embedded in an object it will be probable that the object will be indirectly visible in the web through another object having “eyes” exploring its surroundings (such as security cameras: one in my living room will be able to detect that old fashioned couch that still doesn’t have an electronic fabric covering) and software will be able to identify them.

Atoms and bits

Each of these objects has a unique identity and connecting it to the Internet in a way makes it “exist” in the Internet. Its atoms are mirrored by bits in the web. This is interesting because it is so much cheaper to deal with bits than to deal with atoms. Rather than acting on the real object one could act on its mirror representation, only going back to the real object when absolutely necessary.

We could imagine our digital camera existing as a mirror copy on the web. On that mirror copy third party service providers may deliver services for better white balance. When we take a photo (in RAW) the photo is uploaded to the mirror camera on the web to be processed by these third party services and made available to all authorised users. After a few photos the mirror camera (using a third party service) can detect a trend and can advise the real camera about a few fine-tunings in exposure to make the next photos better.

Similar examples may be provided for cars, to optimise fuel consumption by synchronising the driving of several cars in an area. All the simulation may take place in the web space and each car is informed on the actions required.

This coupling of atoms with bit mirrors in the web, followed by a decoupling of the bits from the atoms to work on them independently, fosters the development of a web economy at less cost than the economy having to deal with atoms. And because of its lower (entrance) cost it is open to many more players. We have already seen the amazing development of apps (in the millions now) and of apps developers (in the hundreds of thousands). Expect more! I have recently received a request from a major “spaghetti” producer in Italy to study how to bridge their products with the web, how to make spaghetti become part of the web …

The Internet WITH Things

Let me close these ramblings by observing that once you have a substantial proportion of everyday objects mirrored in the web you can access them via the web. This is what I have been calling for a few years now the Internet WITH Things. Whilst the Internet of Things is an interconnection fabric used by things to connect with one another (with little involvement of humans) the Internet WITH Things is our Internet, the one we use today that becomes enriched by things. We are no longer restricted to connect to information (and services): we can connect to things, and this connection happens first in cyberspace (where it is easy to accomplish and cheap) and extends into the real world. To make this connection seamless, however, we need to step up and move into the semantic world, not just the semantics of the objects but semantics of ourselves as well. We will be able to ask Google “where are my keys” and in principle, since the keys are a thing and they are on the Internet I should be able to track them. However, the Google engine (assuming that is what we will turn to) will need to understand which keys we are talking about. Are they the ones to our home or the ones for the car or for a drawer in our office? The search engine will need to understand why we are asking such a question and that will require moving up the ladder, into the semantic space.

Cisco is talking about the Internet of Everything to highlight that everything will be connected via the Internet. I still find useful to distinguish the various hues of the Internet because that singles out the specific challenges, specific usages and lets us focus on specific business models which I believe will be the driving forces in the evolution, taking for granted that the required technology will be there.

 


 

Roberto SaraccoRoberto Saracco is the President of EIT ICTLABS Italy and Italy Node Director (European Institute of Innovation and Technology). His background is in math and computer science. Up to December 2011 he was the Director of the Telecom Italia Future Centre in Venice, looking at the interplay of technology evolution, economics and society. At the turn of the century he led a World Bank-Infodev project to stimulate entrepreneurship in Latin America. He is a senior member of IEEE where he leads the Future Directions Committee. He has published over 100 papers in journals and magazines and 11 books.

 

 

Article 1

The Fading Line between Atoms and Bits

Roberto Saracco

We have already started, and in the coming years more and more “Things” will be connected to the Internet, creating what we sometimes call the Internet of Things (IoT). There will be things with embedded electronics that will be connected directly to the Internet; others will be connected to nearby 'Things' that act as a gateway to the Internet.

 


Article 2

Early IoT Applications Illustrate Emerging Trends

Chung-Sheng Li

The emerging Internet of Things (IoT) is often discussed as a phenomenon of the future, rather than as an enabler of current applications. Yet early applications in use today can provide a clear sense of the shape of things to come, if not the full gamut of possibilities.

Too often, in my view, the “full gamut of possibilities” blinds us to the IoT’s present capabilities. The notion that, if we connect a zillion “things”, applications will emerge may be true. But a more pragmatic approach would be to ask, which things should we connect, and to what end?

 


Article 3

The Internet of Things: A Title that is both Wrong and Unhelpful

William Webb

We have come to adopt the title Internet of Things (IoT) to describe the idea of connecting a myriad of machines such as smart meters, parking sensors, intelligent thermostats and much more. The “things” are a wide range of machines, sensors, devices and similar – broadly anything that involves electronics and would benefit from connectivity. The “Internet” is the idea that these will be inter-connected in a manner similar to the Internet.

 


Article 4

The Internet of Things: The Story So Far

Payam Barnaghi and Amit Sheth

The combination of embedded technologies, wired and wireless communications and low cost sensing devices on the Internet make up the Internet of Things (IoT). With an expected 50 billion connected things by 2020, this has created huge interest. Predating the current situation in the IoT were RFID technologies for identifying real world objects, (wireless) sensor and actuator networks.

 

 

This Month's Contributors

Roberto Saracco is the President of EIT ICTLABS Italy and Italy Node Director (European Institute of Innovation and Technology).
Read More >>

Chung-Sheng Li is currently the director of the Commercial Systems Department. He has been with IBM T.J. Watson Research Center since May 1990.
Read More >>

William Webb is CEO of the Weightless SIG, a body standardizing a new M2M technology and President-Elect of the IET.
Read More >>

Payam Barnaghi is a Lecturer (Assistant Professor) at the Institute for Communication Systems at the University of Surrey.
Read More >>

Amit Sheth is the LexisNexis Ohio Eminent Scholar and director of Kno.e.sis at Wright State University.
Read More >>

 

Contributions Welcomed
Click Here for Author's Guidelines >>

 

Would you like more information? Have any questions? Please contact:

Raffaele Giaffreda, Editor-in-Chief
raffaele.giaffreda@create-net.org

Stuart Sharrock, Managing Editor
stuartsharrock@ieee.org

 

About the IoT eNewsletter

The IEEE Internet of Things (IoT) eNewsletter is a bi-monthly online publication that features practical and timely technical information and forward-looking commentary on IoT developments and deployments around the world. Designed to bring clarity to global IoT-related activities and developments and foster greater understanding and collaboration between diverse stakeholders, the IEEE IoT eNewsletter provides a broad view by bringing together diverse experts, thought leaders, and decision-makers to exchange information and discuss IoT-related issues.