
Internet of Things, People, and Processes
Editor: Schahram Dustdar • dustdar@dsg.tuwien.ac.at

60 	 Published by the IEEE Computer Society	 1089-7801/15/$31.00 © 2015 IEEE� IEEE INTERNET COMPUTING

A s noted by Tim Berners-Lee, the inventor
of the World Wide Web, it’s not the docu-
ments that are actually interesting, it’s the

things they’re about.1 The last level of abstraction
for the Web is to connect physical things. With
recent advances in RFID, wireless sensors net-
works, and Web services, the Internet of Things
(IoT) offers the capability of integrating informa-
tion from both the physical and virtual worlds.
With IoT, it becomes possible to infer the status
of real-world entities with minimal delay using a
standard Web browser.2,3

IoT is the embodiment of the evolution from
systems linking digital documents to systems
relating digital information to real-world physical
items. While it’s well understood that IoT offers
numerous opportunities and benefits, it also pres-
ents significant technical challenges in develop-
ing applications in the IoT environment (see the
related sidebar discussing others’ efforts).2,4 One of
the main challenges is to smoothly and seamlessly
integrate the virtual and physical worlds to effec-
tively manage things of interest (TOIs) in IoT.5-7
This is critical for a number of important appli-
cations, such as object discovery (for example,
finding a quiet restaurant), recommendation (sug-
gesting a device that can consume a video stream),
and mashup (composing device functionalities for
a new service). A crucial prerequisite is acknowl-
edging the seamless information access, exchange,
and manipulation between the two worlds.

Here, we explore a new direction in realiz-
ing information integration between the physi-
cal and virtual worlds. We design and develop
a system that offers an integrated Web-based
interface to manage (that is, connect, monitor,
control, mashup, and visualize) things in an IoT
environment, which helps people be aware of
their surroundings and thereby make better deci-
sions. The system provides a layered framework
for managing and sharing the information pro-
duced by physical things. We also adopt a rule-
based approach to aggregate individual things for
building context-aware, personalized new value-
added services. We implement the prototype in a
real-world, inhabited home environment, where
residents can access, control, and compose physi-
cal resources in a variety of contexts. The prac-
tical experiences gained from this IoT project
provide insight into how applicable IoT is to real-
world industrial applications such as independent
living of the elderly, healthcare, and environmen-
tal monitoring of smart cities.

Our System Design
Figure 1 shows our system’s architecture. The
architecture is layered, developed using the
Microsoft .NET framework and SQL Server 2012.
The system maps physical things and their related
data to corresponding virtual resources, which it
can aggregate and visualize via a range of soft-
ware components. The system provides two ways

Web-Based Management
of the Internet of Things
Lina Yao and Quan Z. Sheng • University of Adelaide

Schahram Dustdar • Vienna University of Technology

The Internet of Things (IoT) system presented here seamlessly integrates vir-

tual and physical worlds to efficiently manage things of interest (TOIs), where

services and resources offered by things easily can be monitored, visualized,

and aggregated for value-added services by users. Using practical experience

gained from this system, the authors identify several R&D opportunities for

building future IoT applications.

Web-Based Management of the Internet of Things

JULY/August 2015� 61

to identify physical objects and con-
nect them to the Web. The first is to
use RFID technology, where physical
objects are attached with RFID tags
and interrogated by RFID readers. The
second is to combine sensors with
objects to transfer the raw data to the
network. Then the raw data captured
by readers and sensors is processed
further. In the following, we describe
the key system modules and their
implementation details.

Data Access and the Sensor Hive
The data access layer manages RFID
tags and sensors associated with
physical things; collects raw RFID and
sensor data and processes them; and
provides a universal API for higher-
level programs to retrieve the status
of things. Due to inherent charac-
teristics of RFID and sensor data (it’s
volatile, for example),8,3 this layer

contains several software components
for filtering and cleaning the collected
raw data, and adapting such data for
high-level applications. The advan-
tage of the data access layer is to allow
the system to provide data synchro-
nously. This is important, since some
devices work with more than one sen-
sor and the sensor readings may come
asynchronously. This layer works in a
scalable, plug-and-play fashion, where
we can easily plug in new sensors and
remove the old sensors.

The sensor hive module in the
architecture essentially lets you map
physical things to the corresponding
virtual resources. To achieve a seam-
less integration of physical things
with an organization’s business pro-
cesses, applications must be able to
understand different data semantics.
There are several languages, such as
Physical Markup Language (http://

web.mit.edu/mecheng/pml), Micro-
formats (www.microformats.org),
and Resource Description Frame-
work (RDF; www.w3.org/RDF), which
we can use to add semantics to the
descriptions of things. In our design,
we exploit schema.org (www.schema.
org), a recent initiative (launched in
2011 by Bing, Google, and Yahoo)
that’s designed for both human users
and machines. The universal RESTful
API provided in our design enables
higher-level programs to retrieve
the status of physical things with
specified addresses, without knowing
where and how to find the physical
sensors associated with the things.

Virtual Things
This module maps a collection of
classes (also called virtual things) to
their corresponding physical things.
Each virtual thing communicates with

Related Work in Developing IoT Applications

With billions of things interconnected and present over
the Web, there are significant software engineering

challenges in developing Internet of Things (IoT) applications,
due to their unique and inherent characteristics. The SENSEI
project (www.sensei-project.eu) proposes an architectural
framework that focuses on addressing scalability issues in wire-
less sensor and actuator networks. SemSorGrid4Env (www.
semsorgrid4env.eu) develops a service-oriented architecture
and middleware that assists developers in building large-scale,
semantic-based sensor network applications. Both projects,
however, deal with the connectivity issues of IoT: how to con-
nect heterogeneous things to the Web rather than how to
describe and model things. The recent research and devel-
opment activities at the Commonwealth Scientific and Industrial
Research Organization (CSIRO)1 offer some interesting expe-
riences in applying IoT in a number of application domains,
such as smart farming. They developed an ontology-enabled
architecture where the sensor observations are published as
linked data cubes for long-term data analysis and sharing at the
national scale. However, the system doesn’t provide suitable
integrated abstractions for things.

University of Washington researchers developed an IoT
application, which unfortunately only focuses on managing
the collected RFID data.2 The Paraimpu platform3 provides a
Web-based social platform for people to connect, compose,
and share things. To perform mashups of heterogeneous things,

Paraimpu exploits several strong abstractions. In the Hyperpipe
project (http://geoweb.crs4.it/doku.php?id=hyperpipes), things
are represented as Web services and connected using pipes so
that users can easily compose things for new services. How-
ever, most things are resource-constrained and the traditional
service-oriented architecture (SOA) standards like SOAP and
Business Process Execution Language (BPEL) might not be
applicable. Many research projects are actively solving these
challenges and one notable effort is the IoT6 project (www.
iot6.eu), which focuses on investigating IPv6 and related stan-
dards, such as the Constraint Application Protocol (CoAP)4
and IPv6 over Low-Power Wireless Personal Area Networks
(6LoWPAN; http://tools.ietf.org/wg/6lowpan) to overcome
IoT’s current fragmentation.

References
1.	 K. Taylor et al., “Farming the Web of Things,” IEEE Intelligent Systems, vol.

28, no. 6, 2013, pp. 12–19.

2.	 E. Welbourne et al., “Building the Internet of Things Using RFID: The RFID

Ecosystem Experience,” IEEE Internet Computing, vol. 13, no. 3, 2009, pp.

48–55.

3.	 A. Pintus, D. Carboni, and A. Piras, “Paraimpu: A Platform for a Social Web

of Things,” Proc. 21st Int’l World Wide Web Conf., 2012, pp. 101–104.

4.	 C. Bormann, A.P. Castellani, and Z. Shelby, “CoAP: An Application Protocol

for Billions of Tiny Internet Nodes,” IEEE Internet Computing, vol. 16, no. 2,

2012, pp. 62–67.

Internet of Things, People, and Processes

62	 www.computer.org/internet/� IEEE INTERNET COMPUTING

the sensor hive, collects the informa-
tion, and interprets the current status
of the corresponding physical device.
For example, the virtual device of a
microwave oven can query the sensor

values associated with the physi-
cal microwave oven from the sensor
hive layer, and use this information
to decide the oven’s current sta-
tus (idle or in use). A virtual thing

is responsible for generating events
based on the collected information
(such as when the refrigerator door
opens), which can be directly used
by high-level applications or further

Figure 1. Our system’s layered architecture. The system maps physical things and their related data to corresponding
virtual resources, which it can aggregate and visualize via a range of software components.

Collect sensing data from data access layer

Wrapper

Collect operations from virtual things

Apply changes to physical things

Event detectorContextual information retriever Event aggregator

Event processing unit

Generate
things events

Subscribe events

Listening things events Record things status to database

Change
things status

Rule engine

Database

Service
repository

Service container

Service
manager

GUI for admin Web-based user interface

Physical things

Data access layer

Sensor hive

Virtual things

User interface

Event
management

Data repository

Service layer

Microwave oven Light Fridge
RFID positioning grid Toaster

Web-Based Management of the Internet of Things

JULY/August 2015� 63

processed by other modules (for
example, an event-processing unit).

Event Management
This layer focuses on event process-
ing that automatically extracts and
aggregates objects’ usage events
based on the data feeds from the vir-
tual things layer in a pipelined fash-
ion. The pipeline consists of three
main phases: event detection, contex-
tual information retrieval, and event
aggregation.

The event detector captures and
decides whether a physical thing is
in use. In our design, there are two
ways to detect usage events of things:
a sensor-based approach for detect-
ing state changes and RFID-based
approach for detecting mobility.7 In
sensor-based detection, an object’s
usage is reflected by changes of the
object’s status — for example, the sta-
tus of a microwave oven moves from
ideal to busy when it’s being used. In
the RFID-based detection, an object’s
movement indicates that the object
is being used. For example, if a cof-
fee mug is moving, it’s likely that the
mug is being used. In this situation,
we adopt a generic method based on
comparing descriptive statistics of
the Received Signal Strength Indica-
tion (RSSI) values in consecutive slid-
ing windows.9 The statistics obtained
from two consecutive windows are
expected to differ significantly when
an object is moved.

The contextual information re
triever extracts contextual infor-
mation contained in things’ usage
events. In our current design, we
focus on three types of contextual
information: identity (user), tem-
porality (time stamp) and spatial-
ity (location).9 To obtain the identity
information, we perform manual
labeling, where all participants mark
and record their activities. To obtain
the temporal information, we split a
day into 48 equal intervals of half an
hour each. For example, if the time
stamp of a usage event is 9:07 am,

it will be assigned to the 9:00–9:30
am interval. For the spatial informa-
tion, we consider two situations. For
static objects (perhaps a refrigerator
or microwave oven), the spatial infor-
mation is a prior knowledge. For
mobile objects (an RFID-tagged cof-
fee mug, for example), we provide
coarse-grain and fine-grain methods
for localization. The coarse-grain
method uses the RSSI signal received
from a tagged object to approximate
its proximity to an RFID antenna.
Each zone is covered by a mutually
exclusive set of RFID antennas. The
zone scanned by an antenna with the
maximum RSSI signal is regarded as
the object’s location. The fine-grain
method compares the signal descrip-
tors from an object at an unknown
location to a previously constructed
radio map or fingerprint. We use the
weighted k Nearest Neighbors algo-
rithm (w-kNN) to find the most similar
fingerprints and compute a weighted
average of their 2D positions to esti-
mate the unknown tag location.9

The event aggregator indexes and
stores all the events and services,
together with their related informa-
tion in a database (in the data reposi-
tory layer), which can be mined for
various purposes (for example, find-
ing latent correlations among things,
and making recommendations).9 A
list of elements is constructed, stor-
ing the identifiers of objects, their
types and values, as well as the cal-
culated contextual information. In
this way, applications can focus on
the functionalities without worrying
about operations, such as connecting
to the database, opening connections,
querying with specified languages,
and handling the results (normally
they’re raw data and inconvenient to
access).

The Service Layer
This layer consists of a rule engine and
a service container. The service con-
tainer converts events and data into
corresponding services. In particular,

the repository stores the descriptions
of services (in the form of RESTful
APIs) for things, where applications
can easily access the data associated
with a particular thing stored in the
database (for example, usage his-
tory of a device), and manipulate the
actuators (such as turning on or off a
light). The APIs are represented using
JavaScript Object Notation (JSON),
which is developed from JavaScript
for representing simple data structures
and associative objects. The service
manager is responsible for abstracting
services from the lower level, repre-
senting them as services, and storing
them into the service repository.

The rule engine allows applica-
tions to control a device automati-
cally by establishing a set of rules. A
rule consists of two parts: a condition
and an action. A condition is a com-
position of a set of simple boolean
expressions. An action is simply a set
of device settings — for example, Out­
DoorLight.On=true will turn on the
outdoor lighting device. Alternatively,
an action can also be a program — for
example, SendEmail(Microwave,
‘someone@example.com’) will send
an email to the email address. By
combining simple Boolean expres-
sions together, the application can
setup a complex rule to make devices
“smarter.”

The rule engine consists of three
main components: the rule com-
poser, the rule interpreter, and the
rule parser. The rule composer is a
Web-based application implementing
a user-friendly GUI for rule creation
and action setup, in a drag-and-drop
fashion. The rule interpreter is soft-
ware that receives the string expres-
sions of rules from the rule composer.
It analyzes and annotates the string
statement based on a state machine.
The string expression is then trans-
lated to a list of annotated objects.
The rule parser is implemented based
on the shunting-yard algorithm. It
first compiles each part of the input
sequence into a .NET Expression

Internet of Things, People, and Processes

64	 www.computer.org/internet/� IEEE INTERNET COMPUTING

object. Then, it combines all such
objects together into a complex
Expression Tree, which will be com-
piled into a Lambda expression. This
Lambda expression object will be
stored in memory when the system
is running. It can be invoked when a
device status changes or time elapses.
If the Lambda expression returns true,
a corresponding action will be called.

The User Interface Layer
This layer provides access to the
management of things (for exam-
ple, connection, monitoring, con-
trol, mashup, and visualization).
The Web-based interface offers a 3D
scene in a Web browser for users to
manage their things of interest. We
particularly adopt the Web Graphics
Library (WebGL) in HTML5 to enable
3D scene recreation. The 3D models
are stored as Digital Asset Exchange
(DAE) files, and imported and ren-
dered by using three.js (http://threejs.
org) with plugins. Things are visual-
ized and managed by device plugins.
Each visualized thing is considered
as a device plugin, which contains
one or more 3D model or animation

settings. For instance, the kettle will
show steam when it’s boiling water.
We can use the ShaderParticle­
Engine plugin (https://github.com/
squarefeet/ShaderParticleEngine) for
three.js to create the steam effect for
the kettle. Each device plugin also
provides a serial of APIs, to commu-
nicate with the service layer for status
changes of the corresponding things,
and to reflect such changes on the
Web browser. This layer also provides
an administrative interface for things
management (for example, connect-
ing and disconnecting things, and
viewing event logs).

A Demonstrator IoT
Application
We developed a number of IoT appli-
cations based on the proposed system
architecture. Here, we particularly
focus on introducing a smart home
application, which has been success-
fully deployed in a real-world envi-
ronment (at the first author’s home).
We attached RFID tags and sensors
to 121 physical things (a microwave
oven, fridge, coffee mug, laptop,
couch, and so on) and Figure 2a shows

the statistics of the involved things.
Figure 2b shows some RFID devices
and sensors used in the implemen-
tation, and Figure 2c shows part of
the kitchen setting, including an IoT-
enabled microwave oven and toaster.
When users interact with these physi-
cal things, events are captured (by
RFID readers, for example). The raw
data of the events must be processed
(through cleaning, transformation,
and integration) before storing in the
repository. This task greatly benefits
from our extensive experience in a
recently completed, seven-year RFID
research project.10

This application offers an inte-
grated Web-based interface where a
user can monitor and visualize the
status changes of household things
of interest in real time. Users can
monitor, track, and control the cur-
rent status of physical things by
directly observing the status of their
corresponding icons from the Web
browser. In addition, this application
also augments the physical things
with key social network functional-
ity. We developed a real-time notifi-
cation of things’ status by exploiting

Figure 2. The settings of the smart home Internet of Things (IoT) application. (a) Statistics of the involved physical
things, (b) some devices used in the application, and (c) part of the kitchen setting, such as an IoT-enabled microwave
oven and toaster.

Sensors/actuators RFID readers/antennas/tags

Sensors to detect
status changes

Tiny single-board computer to
connect devices to the Web

RFID devices to
identify items

Sensors to detect
status changes

(b) (c)

Category No. of things

Cooking 48

Entertainment 28

Home of�ce 25

First-aid/medicine

(a)

20

Web-Based Management of the Internet of Things

JULY/August 2015� 65

the Twitter API. Status changes can
be sent to Twitter subscribers in real
time. Figure 3a shows the integrated
Web-based user interface.

Real-Time Visualizer and Monitor
This function offers access to, and
control of, the physical things, allow-
ing the status of physical things to be
visualized in real time. We render the
icons with different effects to be con-
sistent with the real status of physical
things. For example, if the microwave
oven is being used, its corresponding
icon in the Web interface will change
to a highlighted status (yellow), and
otherwise gray (see part 1 of Figure 3a).

The learned position informa-
tion from the event-processing mod-
ule (see Figure 1) is used to visualize
the locations and traces of TOIs at
a coarse-grain level. We divide the
testing area into multiple grids in a
chessboard style (for example, 3 m
* 3 m in the kitchen area). Then, the
trace line is generated by connecting
the grids’ central dots. For example,
as part 2 of Figure 3a shows, the trace
of a coffee mug held by a subject is
displayed in green lines.

Rules Composer
This function provides a graphi-
cal interface letting users control
the devices by setting up a series of
rules via a Web browser without any
programming efforts (see part 3 in
Figure 3a) with the details shown in
Figure 3b. It can create a composite
service using the rule-based com-
position component provided by the
system, which consists of a widget
panel (on the left) and a rules editor
panel (on the right). The widget panel
shows the virtualized objects (things
and people) and each object has a
set of actions (the light, for example,
is associated with two actions: turn
on and turn off). Users simply drag
any object’s widget to the rules edi-
tor panel and start to create a new
rule or change the old rules by click-
ing the “edit” button beside each rule.

An editing panel includes a condi-
tion editor and an action editor. The
condition editor lets users change or
set rules based on contextual infor-
mation (for instance, environmental
information such as temperature, or
event information such as a person

approaching). Figure 3b shows the
interface on specifying a rule.

O ver the last few years, IoT has
become a vibrant and rapidly

expanding area of research and

Figure 3. Real-time notification of things’ status using Twitter. (a) The 3D Web-
based application interface. (b) The rule composer supports users so that they
can easily create their own rules. For example, for editing a rule like “turn on
the outdoor light when a person is approaching during midnight to 6 am or 6
pm to midnight,” a user needs only to drag the person and clock icons to the
condition subpanel and the light icon to the action subpanel, and perform some
simple adjustments (such as adjusting the clock slider to set the time period).

(a)

(b)

Simply drag and specify

The rule is
automatically generated

Internet of Things, People, and Processes

66	 www.computer.org/internet/� IEEE INTERNET COMPUTING

development. We view the practical
experiences gained, and the lessons
learned, from our work presented in
this article as a step towards further
effective development of IoT applica-
tions. IoT is still far from mature, and
building IoT software calls for more
innovative solutions that address
many remaining challenges. Here, we
identify several directions for future
research and development.

Things Discovery in IoT. Physical
things are becoming an integral part
of the emerging ubiquitous Web. With
billions of things connecting and
interacting over the Internet, there’s
an urgent need to effectively index,
organize, and manage them for dis-
covery, recommendation, and mash-
ups. A fundamental task is to discover
underlying connections among things,
which remains a significant challenge.
Indeed, finding things’ correlations is
a much more challenging task than
finding relations for Web documents,
for two reasons. First, things are
diverse and heterogeneous in terms
of functionality, access methods, and
descriptions. Despite recent efforts in
semantic techniques, the profiles of
things still can’t be crafted and repre-
sented easily in a meaningful feature
space.5 Second, correlations among
things aren’t obvious and are difficult
to discover. Unlike social networks
of people, where users have observ-
able links and connections, things
often exist in isolated settings and
the explicit interconnections between
them are typically limited. Based on
our experience, we further investi-
gated this challenge by proposing a
novel graph-based method to mine
the rich content embodied in human-
thing interactions. Some preliminary
results from our work are reported
elsewhere.7,9,11

Data Management in IoT. Managing
IoT data is another fundamental chal-
lenge in building IoT software. IoT
data is not only extremely large in

scale and volume, but also continu-
ous, distributed, streaming, and vola-
tile. Indeed, IoT is one of the major
contributors to the age of Big Data.
Given the scale of IoT, data manage-
ment topics such as storage, real-time
data stream analytics, event process-
ing, data quality and uncertainty, and
data interpretation and aggregation
all need a revisit.2 We recently con-
ducted a survey4 to investigate the
main techniques and the state-of-the-
art research efforts in IoT, particu-
larly from data-centric perspectives,
including data stream processing,
data storage models, complex event
processing, and searching in IoT. Sev-
eral open research issues on IoT data
management are also discussed.

Transaction Handling in IoT. In
an IoT environment, the physi-
cal and virtual worlds co-exist and
interact simultaneously. To process
and manipulate information seam-
lessly between the two worlds, large
amounts of data must flow between
both worlds to ensure they’re syn-
chronized. This calls for new chal-
lenges to process heterogeneous data
streams to materialize real-world
events in the virtual world, and to
send interesting events from the
virtual world to users in the physi-
cal world.12 In addition, most things
are resource-constrained, which are
typically connected to the Internet
using lightweight, stateless proto-
cols such as the Constraint Applica-
tion Protocol (CoAP)13 and IPv6 over
Low-Power Wireless Personal Area
Networks (6LoWPAN; http://tools.ietf.
org/wg/6lowpan), and accessed using
RESTful Web services. This makes
transaction handling a challenging
task, and extensive research is needed
in this direction.

Security and Privacy in IoT. Due
to the proliferation of smart devices
in IoT, security and privacy protec-
tion is a serious challenge in build-
ing IoT applications.2,4,8 In IoT,

everyday objects become information
security risks. In addition, more and
more personal devices have embed-
ded sensing capabilities for people’s
activities, locations, and surrounding
environments. Recent advances in
cryptographic algorithms can make
general-purpose processors encrypt
packets at line rates. How to exploit
such algorithms in IoT still remains
a challenge, since things in IoT nor-
mally possess low transmission rates
and their connections are lossy. We
believe that comprehensive solu-
tions are needed not only to protect
IoT information and give users the
confidence that their data won’t be
misappropriated, but also to maintain
desirable system performance.�

Acknowledgments
Quan Z. Sheng’s work is partially supported by

Australian Research Council (ARC) Future Fel-

lowship FT140101247 and Discovery Project

DP140100104.

References
1.	 T. Berners-Lee, “The Web of Things,” ERCIM

News, no. 72, 2008; http://ercim-news.

ercim.eu/en72/keynote/the-web-of-things.

2.	 L. Atzori, A. Iera, and G. Morabito, “The

Internet of Things: A Survey,” Com-

puter Networks, vol. 54, no. 15, 2010, pp.

2787–2805.

3.	 P. Barnaghi, A. Sheth, and C. Henson,

“From Data to Actionable Knowledge: Big

Data Challenges in the Web of Things,”

IEEE Intelligent Systems, vol. 28, no. 6,

2013, pp. 6–11.

4.	 Y. Qin et al., “When Things Matter: A

Data-Centric View of the Internet of

Things,” CoRR, July 2014; http://arxiv.org/

abs/1407.2704.

5.	 B. Christophe, V. Verdot, and V. Toubiana,

“Searching the ‘Web of Things’,” Proc. 5th

Int’l Conf. Semantic Computing (ICSC),

2011, pp. 308–315.

6.	 A. Pintus, D. Carboni, and A. Piras, “Para-

impu: A Platform for a Social Web of

Things,” Proc. 21st Int’l World Wide Web

Conf., 2012, pp. 101–104.

7.	 L. Yao and Q.Z. Sheng, “Exploiting Latent

Relevance for Relational Learning of

Web-Based Management of the Internet of Things

JULY/AUGUST 2015 67

 Ubiquitous Things,” Proc. 21st ACM Int’l

Conf. Information and Knowledge Manage-

ment, 2012.

8. Q.Z. Sheng, X. Li, S. Zeadally, “Enabling

Next-Generation RFID Applications: Solu-

tions and Challenges,” Computer, vol. 41,

no. 9, 2008, pp. 21–28.

9. L. Yao et al., “A Model for Discovering Cor-

relations of Ubiquitous Things,” Proc. 13th

IEEE Int’l Conf. Data Mining, 2013, pp.

1253–1258.

10. Y. Wu et al., “Modeling Object Flows

from Distributed and Federated RFID Data

Streams for Effi cient Tracking and Trac-

ing,” IEEE Trans. Parallel and Distributed

Systems (TPDS), vol. 24, no. 10, 2013,

pp. 2036–2045.

11. L. Yao et al., “Exploring Recommendations

in Internet of Things,” Proc. 37th ACM

SIGIR Conf., 2014, pp. 855–858.

12. B.C. Ooi, K.-L. Tan, and A.K.H. Tung,

“Sense the Physical, Walkthrough the Vir-

tual, Manage the Co(existing) Spaces: A

Database Perspective,” SIGMOD Record,

vol. 38, no. 3, 2009, pp. 5–10.

13. C. Bormann, A.P. Castellani, and Z. Shelby,

“CoAP: An Application Protocol for Bil-

lions of Tiny Internet Nodes,” IEEE Internet

Computing, vol. 16, no. 2, 2012, pp. 62–67.

Lina Yao is a lecturer in the School of Computer

Science at the University of Adelaide. Her

research interests include data mining, the

Internet of Things, ubiquitous computing,

and service-oriented computing. Yao has a

PhD in computer science from the Univer-

sity of Adelaide. Contact her at lina.yao@

adelaide.edu.au.

Quan Z. Sheng is an associate professor and

head of the Advanced Web Technologies

Research Group in the School of Com-

puter Science at the University of Adelaide.

His research interests include the Web of

Things, Big Data analytics, Web science,

service-oriented computing, pervasive

computing, and sensor networks. Sheng

has a PhD in computer science from the

University of New South Wales. He’s a

member of IEEE and the ACM. Contact him

at michael.sheng@adelaide.edu.au.

Schahram Dustdar is a full professor of com-

puter science (informatics) and he heads

the Distributed Systems Group at the

Vienna University of Technology. His work

focuses on Internet technologies. Dustdar

is a member of the Academy Europeana, an

ACM Distinguished Scientist, and recipient

of the IBM Faculty Award 2012. Contact

him at dustdar@dsg.tuwien.ac.at; dsg.

tuwien.ac.at/.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

Showcase Your
Multimedia Content
on Computing Now!

IEEE Computer Graphics and Applications
seeks computer graphics-related
multimedia content (videos, animations,
simulations, podcasts, and so on) to
feature on its Computing Now page,
www.computer.org/cga.

If you’re interested, contact us at
cga@computer.org. All content will be
reviewed for relevance and quality.

