
2	 January/February 2016	 Copublished by the IEEE Computer and Reliability Societies � 1540-7993/16/$33.00 © 2016 IEEE

SOFTWARE EVERYWHERE

Learning Internet-of-Things Security
“Hands-on”

Constantinos Kolias and Angelos Stavrou | George Mason University
Jeffrey Voas, Irena Bojanova, and Richard Kuhn | National Institute of Standards and Technology

What can you glean from using inexpensive, off-the-shelf parts to create Internet of Things (IoT) use
cases? As it turns out, a lot. The fast productization of IoT technologies is leaving users vulnerable to
security and privacy risks.

A lthough the Internet of Things’ (IoT’s) seeds
were planted in 1999, IoT technologies have only

recently become widely available as a result of nano-
technology, telecommunications, and capacitor tech-
nology advancements. The primary design tenet has
remained the same: infuse common electronic devices
with the impression of intelligence by allowing them to
integrate seamlessly with their environment and auto-
matically interact with other devices, thus minimizing
reliance on human intervention.

IoT applications have expanded from strict industrial
and closed-loop systems to commercially available prod-
ucts that address common user needs. An estimated 5 bil-
lion devices are connected to the Internet today, and this
number is expected to increase to 25 billion by 2020.1
At the same time, major IT players have gotten involved
with IoT by developing OSs (for example, Google’s
Brillo: https://developers.google.com/brillo, https://
dev.windows.com/en-us/iot; and Microsoft’s Win-
dows 10 IoT Series: https://www.microsoft.com/en-us
/WindowsForBusiness/windows-iot), hardware (for
example, Samsung’s Artik: www.artik.io; and Intel’s
Edison: http://www.intel.com/content/www/us/en
/do-it-yourself/edison.html), protocol stacks (for

example, Google’s Weave: https://developers.google
.com/weave; and Apple’s HomeKit framework: https://
developer.apple.com/homekit), and cloud services (for
example, IBM’s Bluemix: https://console.ng.bluemix
.net; and Amazon’s Amazon Web Services IoT: https://
aws.amazon.com/iot). In the near future, IoT devices
are poised to become increasingly mainstream, shap-
ing technology innovation to application areas ranging
from healthcare (through health-monitoring wearables)
to retail (with flyable crafts delivering online orders) to
transportation (via self-driving vehicles). IoT technolo-
gies are transitioning from monolithic sensor and actua-
tor boards to modular appliances focused on applications
that satisfy real-life needs. Currently, IoT is an ecosystem
composed of specialized hardware, network connectiv-
ity, and cloud counterparts all designed to facilitate data
collection and processing. As we’ll discuss, the fast pro-
ductization of IoT technologies might leave users unable
to defend themselves against security and privacy risks
stemming from IoT products and frameworks.

Security Implications of IoT
IoT’s security implications are creating hurdles for its
wider adoption.2,3 As the IoT market grows so does its

www.computer.org/security� 3

attack surface because new interconnected devices are
added to the chain, each of which can become the weak-
est link for an adversary to exploit. Moreover, increased
demand and adoption might make it hard for the indus-
try to assess critical aspects of IoT security and pri-
vacy. For instance, new IoT-specific protocols are being
designed constantly4,5 but might not be thoroughly
tested for trustworthiness. Lastly, IoT has become an
umbrella term for many applications and industry use
cases, each having its own security requirements but
relying on the same fundamental IoT technologies.
Designing security that encompasses and applies to all
use cases is a daunting task, one that standards and best-
practices committees are still struggling to determine
how to address.

We learned firsthand about the potential pitfalls of
IoT applications and components as applied to exem-
plary use cases. Our goal
was to raise aware-
ness of deficiencies
in current practices
and the lack of IoT
security and privacy
standards as well as
their possible impli-
cations for the public
and widespread IoT adoption. To that end, we present
a set of exemplary use cases that leverage commercial
off-the-shelf products and services. We purposely kept
the IoT application type and implementation method-
ology simple, to mimic the design decisions an average
user might take to achieve the desired functionality
using similar components. We didn’t attempt to pro-
vide wide coverage but rather to highlight some of the
most severe, yet easy to abuse, security and privacy
threats to simple IoT use cases, namely:

■■ leakage of personal identifiable information (PII),
■■ leakage of sensitive user information, and
■■ unauthorized execution of functions.

We refrain from naming the commercial products used
because our goal is to evaluate IoT risks, not to com-
pare products.

Leakage of PII
A desirable but often controversial feature of IoT appli-
cations is user and location awareness. IoT applica-
tions can trigger certain actions when specific events
occur. For instance, they might provide mobile push
notifications when a device’s owner enters or exits an
area, or launch an app when two objects come within
close proximity. Initially, geofencing—mainly through
GPS technology—was precise to only a few meters.

Today, techniques that use the strength of various wire-
less networks’ signals, including Wi-Fi and Bluetooth,
have improved location precision to a few centimeters.
This highly accurate location pinpointing is extremely
appealing for retail IoT applications, such as targeted
advertising and asset tracking, or for use cases such as
airport check-ins.6

As promising as this capability might sound, we can’t
overlook its potential privacy implications, most nota-
bly the risk of user tracking. Indeed, application vendors
might collect and store user location information over
time. If they collect location data on a massive scale and
for extended periods, how valuable does this informa-
tion become? Another concern is unauthorized parties
capitalizing on information leakage during transit (by
wiretapping communication channels) or storage (by
hacking application components). The underlying risk

becomes more severe owing
to the amount of PII
that the average user
broadcasts daily. This
phenomenon first
appeared with the
introduction of smart-
phones and escalated
with the proliferation

of wearable devices. For example, researchers demon-
strated how straightforward it is to trace wearable devices
such as fitness trackers by exploiting the transmitted Blue-
tooth low energy (BLE) signals.7

The ease with which user activities can be tracked led
to the development of opt-out mechanisms such as Do
Not Track. In the IoT realm, where intelligent applica-
tions are associated with individuals rather than online
personae and browsing histories reflect physical locations
rather than virtual domains, the severity of user-tracking
outcomes increases multifold. A person’s identity and
location information collected over time might be
exploited in various ways: from simple user annoyance
in the form of aggressive advertising (such as personal-
ized spam at point-of-sale locations) to more serious
advanced surveillance (such as tracking user routes and
constructing user habit profiles) and even grievous intel-
ligent terrorism (such as triggering criminal activities
based on high profile individuals’ presence in an area).

Personalized Light-Switch System
To highlight the simplicity and low cost of exploit-
ing this privacy risk, we proposed a possible user-
improvised system: an IoT version of a motion-sensing
light switch. Modern office environments and industrial
settings often use commercial light control systems to
help reduce energy consumption. These limited systems
are adequate for office use but lack the personalization

Our goal was to raise awareness of
deficiencies in current practices and the

lack of IoT security and privacy standards.

4	 IEEE Security & Privacy� January/February 2016

SOFTWARE EVERYWHERE

that home automation users often seek. For instance,
users might have different color and intensity prefer-
ences or even diurnal preferences.

At a minimum, such functionality requires a com-
ponent that signifies a specific user’s presence in an
area, a component that senses the user’s presence, and
a component that turns the lights on or off. For each of
these components, respectively, we used commercially
available proximity tags, a Bluetooth-enabled computer
connected to the network, and an off-the-shelf smart
lighting system (see Figure 1).

Proximity tags are simple coin-sized microcontrollers
whose only meaningful function is to constantly emit
beacons—BLE messages of a specific format that contain
a unique identifier. Application logic is located in the cor-
responding cloud or mobile applications, which in turn
are programmed to respond in a specific way to the bea-
cons. Typically, these devices are attached to the objects
of interest. If the devices get misplaced, the correspond-
ing application locates them with high accuracy, even in
indoor environments. In our scenario, we assumed that
the tags would be bound to a personal item that the user
possesses, such as keys. In this way, the unique identifier
transmitted would indirectly identify the user.

The remote-control lighting system included a set of
smart bulbs, and an Ethernet/Wi-Fi enabled bridge that
could receive and forward remote commands regarding
the lights’ status. Commands were transmitted via Wi-Fi
as simple HTTP requests from the smartphone to the
lighting system’s bridge component. In turn, the bridge

used the ZigBee protocol (www.zigbee.org/non-menu-
pages/zigbee-pro-download) to forward commands to
the light bulbs. Typically, users must first pair the bridge
with a smartphone installed with the corresponding
app. Users can then control the bulbs’ output through
the app; however, it’s possible to authorize another
device on the network to issue analogous Web requests.

Systems like the one described must maintain a
database of pairs of unique identifiers that correspond
to users and their preferences (for example, color). At
the same time, they must constantly monitor for known
identifiers and issue the corresponding HTTP requests
as a response. Any computer connected to the network
with Bluetooth capabilities is adequate; the only con-
straint is that its location must be static to ensure consis-
tent readings. We used an inexpensive and well-known
credit card–sized computer. Figure 1 displays the sam-
ple implementation’s main components.

Identified Risks
In this use case, attackers might use alternative points
of vulnerability to inflict harm or steal private informa-
tion. More specifically, the system presents the follow-
ing security concerns.

Insecure wireless communications. The wireless medium
is open by nature, so actions such as jamming, eaves-
dropping, or message injection are more practical and
can go unnoticed. In most cases, it’s possible to manipu-
late the execution of the wireless protocol via the trans-
mission of forged media access control (MAC) layer
messages. More precisely, the 802.11 (Wi-Fi) protocol
has been shown to be susceptible to denial-of-service
(DoS) and man-in-the-middle (MiM) attacks as well as
to cracking of the secret key.8 The ZigBee protocol has
documented weaknesses in key distribution because it
relies on a single master key that’s transmitted over the
air, and to replay attacks, because it uses only the frame
counter field to achieve message freshness.9 In this use
case, attackers with the appropriate equipment could
easily launch successful DoS attacks against the Wi-Fi
network—making the system unresponsive to any val-
idly issued command—or to replay commands in the
ZigBee network—causing anomalous behavior and
annoyance to users.

Custom authentication practices. The limited-capability
hardware utilized in most IoT commercial products
(especially those in the home automation sector)
necessitates lightweight security practices. Nonethe-
less, because of a lack of corresponding standards, many
vendors rely on custom security mechanisms that are
usually kept secret to achieve security through obscu-
rity. The particular smart lighting product we used

Figure 1. Internet of Things (IoT) use case of a personalized light-switch system
employing inexpensive, commercially available components. This simple system
has many vulnerabilities—including (1) insecure wireless communications,
(2) custom authentication practices, and (3) broadcasting of identification
information—that could lead to leakage of users’ personal identifiable
information. BLE is Bluetooth low energy.

3

11

Broadcasting of
identification information

Beacon tag

Single-board computer

Insecurity of wireless
communications

2

Custom authentication
practices

Smartphone

Smart light
system bridge

Smart light
system bulbs

Beacon
(BLE)

Wi-Fi

Wi-Fi

Zigbee

Zigbee

Zigbee

www.computer.org/security� 5

implements a custom authentication mechanism based
on tokens generated by simple hashing of the device’s
MAC address. Nitesh Dhanjani demonstrated that
attackers in close proximity to the lighting system can
easily forge control commands by spoofing whitelisted
authentication tokens, thus capitalizing on this vulner-
ability to annoy users.10

Broadcasting user identification information. The
described system identifies users and senses proximity
through a device that constantly broadcasts a unique
identifier within a short range. This is a typical exam-
ple of theoretically harmless and highly desirable extra
functionalities—identity and location awareness—
having significant consequences for user privacy. The
most important inefficiencies stem from the fact that
identifiers are broadcasted in plaintext and that tags are
attached to users’ personal items, thus creating a cor-
relation. We’ll explain the mechanics that allow such
behavior in further detail.

Beaconing of Unique Identifiers
Beacons estimate proximity based on the received sig-
nal strength indicator field for BLE signals. One of the
killer apps of beacons is smart advertising. For example,
a beacon transmitter can be placed in a relatively static
location, such as inside a store in a shopping mall, and
users that come in close proximity will receive promo-
tional messages on their smartphones. Another popular
application is the accurate tracking of items: users attach
portable tags to valuable items, such as keys, that an app
will help locate should they be misplaced.

Today, beacon devices are available in different
shapes and sizes (for example, tags, USB sticks, or larger
static appliances) but are inexpensive to construct and
are considered expendables. In most cases, unlike con-
ventional BLE devices, beacon transmitters can’t pair
with other devices and exchange data; thus, they trans-
mit a single message throughout their entire lifetime.
The message is usually a rather large identifier (so it’s
virtually unique) along with other information follow-
ing one of these formats: iBeacon (Apple; https://
developer.apple.com/ibeacon/Getting-Started-with-
iBeacon.pdf), altBeacon (Radius Networks; http://
altbeacon.org), or Eddystone (Google; https://github.
com/google/eddystone). Then, higher-layer applica-
tions (for example, installed in smartphones) perform
actions when a message with an ID from a predefined
set of universally unique identifiers (UUIDs) is sensed
in close proximity.

The iBeacon specification, for example, assumes
that beacon messages are transmitted in plaintext and
that the UUID isn’t secret. One can immediately see
that spoofing such messages would be trivial. Although

such an attack might annoy users (for example, by
sending a notification at the wrong time), it’s of little
practical value. Possibly more serious for beacon tech-
nology is the risk of a user becoming associated with a
constantly broadcasted number. It costs approximately
US$80 to create a small board-based device with a
motion sensor, a camera, and a BLE dongle that cap-
tures and stores high-quality images of unaware per-
sons carrying beacon-transmitting devices. To avoid
such conditions, several vendors offer customized
hardware Beacon implementations that include mech-
anisms for changing the UUID. Our experience shows
that many of these mechanisms simply rotate UUIDs
and aren’t based on cryptographic functions. These
devices’ limited computational power makes it difficult
to provide strong security.

Hiding Identity
Because of these risks, users might not want to use
beacon-broadcasting devices to tag highly personal
objects that they carry daily. If they do, however, secu-
rity-related amendments to the protocols might be
required. A quick fix is to allow message broadcasting
to be manually or automatically enabled or disabled
based on user location. However, this solution intro-
duces the additional challenge of securely enabling
beacon devices remotely, requiring support for a light-
weight authentication mechanism. More reliable solu-
tions might require standards optimization to support
changing UUIDs. In this case, this field must be altered
unpredictably, probably relying on cryptographic oper-
ations such as hashing or encryption. This raises con-
cerns regarding faster battery exhaustion and increased
hardware costs.

Leakage of Sensitive User Information
From health data to payment details to arbitrary sen-
sor information that potentially reveals user habits
and preferences, many IoT applications deal with sen-
sitive user data. Hence, one of the most far-reaching
security threats is leakage of sensitive information,
which the Open Web Application Security Project
identifies as one of the most common vulnerabilities
in the IoT ecosystem.11

Applications commonly collect redundant data or
data not directly relevant to their purpose. There are
several possible reasons for this. First, application devel-
opers might overestimate the requirements of future,
improved application versions. In this case, informa-
tion might leak to the application vendor and anyone
with access to its back end (including malicious users).
Second, applications often don’t communicate properly
with their users regarding the type of sensitive informa-
tion being collected or don’t provide opt-out options.

6	 IEEE Security & Privacy� January/February 2016

SOFTWARE EVERYWHERE

This might happen because the vendor wants to resell
the data and so is gathering as much information as pos-
sible. In this case, the leaked information isn’t limited to
the application vendors but is available to any party that
might acquire it. Finally, the flow of sensitive informa-
tion is sometimes the outcome of bad protection prac-
tices during data transmission (for example, not using
Transport Layer Security). In this case, anyone capable
of eavesdropping on the communication might access
the information exchanged.

Remote Watering System
To demonstrate inadvertent transmission of sensitive
user data, we assembled a smart watering system (see
Figure 2). Conventional watering systems rely on clock
settings to automate the watering process for outdoor
gardens or flower pots. Such systems require manual
reconfiguration when changes in the environment
occur, including fluctuations in temperature and mois-
ture (such as rain). Using open source hardware IoT
components, we easily built an advanced watering sys-
tem that provided live feeds of environmental readings,
including ground moisture, temperature, and luminos-
ity, while simultaneously allowing remote control, or
some automation, of the watering system.

This use case required a component that provided
environmental readings, a module that implemented
user decisions, and a unit that connected the user to the
rest of the system. We relied on a single-board computer
to execute all the sensing and actuating functionality
and a Web application to provide the business logic and
user interface.

The single-board computer we used is a popular
open source hardware kit equipped with an 8-bit Atmel
processor capable of handling multiple external cir-
cuits through its digital and analog I/O pins. It can be
programmed using C/C++ language and a set of open
source software libraries that aid common operations
with these circuits. In our example, the board was the
main system component. It was connected to moisture,
temperature, and luminosity sensors that constantly
provided readings to the Web application. At the same
time, the board was connected to a relay linked to an
external power source and a water valve. Finally, it was
attached to a Wi-Fi shield through which it connected to
a home wireless network. All communication occurred
through Wi-Fi. We programmed the board to execute
HTTP Post to the Web application in prespecified inter-
vals to insert new readings. To stay current on the water
valve’s status (that is, on or off), the board polled the
Web application. The Web application received the
readings from an authorized device and stored them in
a back-end database. Authenticated users could receive
live feeds on conditions and alter the water valve’s status.

The system’s main components are depicted in Figure 2.

Points of Failure
In this simple example, we identified multiple points at
which data leakage, or other undesirable results, could
occur. We describe the most important points of fail-
ure here.

Insecure Web application counterparts. Web applica-
tions interact with their users via dedicated user inter-
faces (UIs). In many cases, invalidated user input
inserted into a UI entry field contains special sequences
that form malicious code in the application layer. This
can lead to XSS and SQL injection attacks. Such attacks
can annoy users (which leads to reduced revenues) and
compromise their privacy. Generally, failure to enforce
good security practices, such as adopting strong creden-
tials during the application development cycle, leads
to compromised accounts and unauthorized access by
malicious users.

Insecure wireless communications. As we discussed,
wireless protocols have an array of vulnerabilities. In
addition to trivial DoS attacks, which, in this case, might
be significant—consider what would happen if the sys-
tem was attacked while watering—MiM attacks are also
relatively easy to accomplish. For example, an attacker
can approach the valid network with a software-enabled
access point (SoftAP) bearing the same service set iden-
tifier (SSID) as that network but no protection. Then, it
can temporarily exile all clients (including IoT devices)
from the valid network by broadcasting deauthentica-
tion packets (unprotected messages that are defined by
the 802.11 specification and, thus, are easy to spoof).
At that point, all devices will attempt to reconnect to
the access point that advertises their known SSID and
has the strongest signal: the attacker’s SoftAP. Advanced
OSs might evade the trap, but the less feature-rich
OSs of many IoT devices won’t understand the dif-
ference and will connect. So, attackers can eavesdrop
on the unencrypted traffic of all devices connected to
the SoftAP, compromising privacy if security isn’t also
enforced at a higher layer.

Unprotected communications. While communication
protection is a de facto choice in desktop environments,
it’s not always practical with IoT, primarily because of
the increased hardware costs versus the application
type. Adoption of additional message protection mech-
anisms on higher layers might be necessary. Here, we
elaborate on the reasons for this limitation.

Lack of Encrypted Communications
IoT application data might be transmitted in plaintext for

www.computer.org/security� 7

many reasons. One common reason is the poor design
decision to treat only the most obviously private user
information as sensitive. In a home automation system,
sensor data like temperature readings might not be con-
sidered sensitive. However, an eavesdropper monitoring
such readings temporarily might be able to infer whether
a user is at home by tracking sudden temperature
changes or significant deviations from outside condi-
tions (for instance, if the user starts the air conditioner).

Another reason for transmitting unprotected data
is the choice of hardware. Many IoT products are inex-
pensive components with limited memory and com-
putational resources. Such devices might be unable to
support the computationally intense cryptographic
functions of public-key cryptography. Hence, they
might be incapable of supporting the SSL/TLS proto-
col, which is the industry-standard transport protection
mechanism. In our use case, even if system designers
considered the privacy implications of unencrypted
data, they would have limited encryption options
because of the hardware platform.

As a result, system designers have two choices: cre-
ate their own lightweight security protocols or imple-
ment modified, stripped-down versions of well-known
security protocols. The first choice runs the risk that the
new mechanism will be vulnerable in practice and incur
significant development costs. However, the second
choice carries a great likelihood of a security vulnerabil-
ity. Thus, custom security schemes or hardware-adapted
protocol implementations might result in data being
transmitted without meaningful protection. For exam-
ple, a system designer might implement a custom TLS
protocol, intentionally leaving out the computationally
heavy certificate verification step. Evidence suggests
that such a modified protocol would run efficiently even
on small single-board computers;12 however, it would
create an opportunity for MiM attacks. Actually, this
last case is the most deceptive of the three, because it
gives users the illusion of industry-standard protection
without really providing it.

Plugging the Leaks

Figure 2. IoT use case of a remote watering system. The system’s (1) insecure Web application counterparts, (2) insecure wireless
communications, and (3) unprotected communications might inadvertently transmit sensitive user information.

3

2

1

Water
container

Water pump
Plant

Insecure Web application
counterparts

2

Access point

Wi-Fi shield

Arduino Uno

Sensors

Sensor readings
Wi-FiCommand Wi-Fi

Insecurity of wireless
communications

Unprotected
communications

Relay

Custom Web
application

8	 IEEE Security & Privacy� January/February 2016

SOFTWARE EVERYWHERE

A dedicated computer that forwards all sensor traffic
to the corresponding Web application and vice versa
might address the previously described architecture’s
security requirements by securing communications.
This “proxy” device can communicate with different
sensor types through shorter-range wireless protocols
(for example, BLE), forcing attackers to be closer to
their targets. Depending on the application, it might be
possible to employ computationally efficient symmetric
cryptography to protect these communication channels
and then rely on the proxy device to protect the traffic
through SSL/TLS when it’s transmitted to the Inter-
net. Another advantage is that this deployment strategy
can scale without significant cost increases and support
multiple communication protocols from different sen-
sor types without extensive system reconfiguration.

Unauthorized Execution of Functions
Usability is a defining factor for any application’s suc-
cess, yet it’s often viewed as in opposition to security.
Frequently, security compromises or strong assump-
tions (for example, that the application is functioning
within a secure network) must be made for a product to
meet the market’s user requirements.

Today, attackers have many opportunities to

infiltrate a network: malware might evade antivi-
rus checks, mobile apps with back doors might allow
remote code execution, vulnerable services running on
clients might allow buffer overflow attacks and unneces-
sarily open ports might welcome unauthenticated mali-
cious entities. Given these risks and modern networks’
increasing complexity, it’s unrealistic to assume that the
exposed clients are reliable and trustworthy. In fact, a
compromised client inside the network is often used
as a stepping stone for an unauthorized entity outside
the network to issue commands that affect the status of
local devices.

The threat is significant for the IoT ecosystem
because IoT devices interact with the physical world
and users. Surprisingly, our use-case analysis indicates
that some IoT products adopt insecure mechanisms
by default to provide a more user-friendly plug-and-
play product.

Automatic Control of Devices
We assembled an IoT system that could automatically
power off potentially dangerous appliances (for exam-
ple, a cooker) on detecting that the user had fallen asleep
(see Figure 3). This scenario is similar to that of power-
ing on a coffeemaker in the morning. This use example

Figure 3. IoT use case of a system that automatically powers off devices (such as a cooker). By relying on (1) insecure wireless communications,
(2) cloud services, and (3) insecure network services, such a system could allow attackers to control the device. UPnP is Universal Plug and Play.

3

1

Cooker

Smart switch
Commercial
cloud service

Access point
Cloud services

2

Client

Command Wi-Fi
UPnP

Fitness tracker

Sensor readings
Wi-Fi

Readings
Wi-Fi

Readings
BLE

Insecurity of wireless
communications

Insecure network
services

Smartphone

www.computer.org/security� 9

required a device that monitored the user’s sleep status,
a switch that could turn conventional appliances on and
off, and an application that brought these two devices
together. We relied on a well-known cloud service, a fit-
ness tracker, and a smart switch.

The commercial cloud service we utilized permits
users to create applications that trigger specific actions
when specific events occur by using Web API calls.

The fitness tracker was a wearable device that moni-
tors wearers’ calories burned, sleep habits, and fitness
by measuring their steps taken and heartbeat. Typically,
it must be paired with a smartphone installed with the
corresponding app. The two devices communicate in
intervals, transmitting data from the fitness tracker to
the smartphone. The smartphone then acts as a proxy
by forwarding the data to the corresponding Web ser-
vice via a Wi-Fi or 3G/LTE connection. In addition,
it presents the statistics in a comprehensive UI. The
triggering part of the cloud application was the fitness
tracker’s detection of sleep.

The smart switch is essentially a relay that can be
connected to a wall socket and any conventional appli-
ance. Initially, the switch must join the wireless net-
work and pair with a smartphone installed with the
corresponding app. The user can then control the
device remotely from the app’s UI. When users are
within the home network, the communication occurs
directly through Universal Plug and Play (UPnP)
commands transmitted through Wi-Fi. When users are
outside the home network’s range, the device issues
an HTTPS request to the corresponding Web service
through 3G/LTE; that service then activates or deac-
tivates the switch. The action part of the cloud appli-
cation is the change in smart switch status. Figure 3
presents this use case’s components.

Architectural Vulnerabilities
This use case presents opportunities for attackers to con-
trol the device, with potentially life-threatening results.
The following are the most important vulnerabilities.

Insecure wireless communications. Once more, assail-
ants can exploit the Wi-Fi protocol’s weaknesses to con-
stantly deauthenticate the device. In our sample case, if
the status of the device is “off ” during the moment of
the attack, the user outcome will most likely be simple
annoyance. On the other hand, if the status is “on,” the
attack might prevent the device from turning off.

Cloud services. Some off-the-shelf IoT products use
cloud services for storage and command and control.
Typically, when users purchase a product, they implic-
itly trust their cloud counterparts as well. In this par-
ticular use case, however, the lack of interoperability

protocols to permit direct communication between
the two applications (the fitness tracker and the smart
switch) meant that an external cloud service had to serve
as the middleman. Hence, trust had to be placed in yet
another entity. As this circle of trust grows, so does the
risk that one of these services follows less strict security
practices. A breach of one service might result in loss of
sensitive user information (such as health data and sleep
habits) and remote control of home appliances.

Insecure network services. Our use-case analysis indi-
cated that some commercial IoT products still adopt
insecure network services and protocols—UPnP is one
of the most popular—to facilitate their seamless setup.
This introduces the risk that unauthorized insiders can
control the switch as we describe next.

Insecure Protocols Running on the Network
UPnP is a set of network protocols that Microsoft
standardized in 1999. It provides a convenient way
to introduce new devices into the network, facilitate
their discovery by other devices, and permit their con-
trol. UPnP requires routers to have the corresponding
feature enabled. It’s widely used in Voice over Inter-
net Protocol (for example, Skype), peer-to-peer (for
example, uTorrent), and gaming applications. One of
UPnP’s most serious security issues is that it trusts net-
work clients. It doesn’t encrypt data, nor does it require
users to authenticate before triggering the execution of
functions, such as searching for UPnP-enabled devices,
querying for their supported capabilities, and activat-
ing them.

In this use scenario, any client on the local network,
and not just the authorized smartphone device, could
query the remote-control switch for its supported
functions and issue a simple, unencrypted HTTP
request with the right SOAP body to manipulate the
device at will.

Future Prospects
Although IoT testing has received relatively little atten-
tion, assuring security and privacy is a central concern
as systems proliferate and connect to safety or security-
critical applications. This is evident even from our small
set of examples.

In many ways, the challenges of IoT assurance
amplify those associated with testing more familiar soft-
ware and hardware platforms.13 But for testing, the most
significant characteristic of IoT systems is the sheer vari-
ety of devices and means of communication. To com-
plicate matters, variations in processor speed, memory,
protocols, and application types are much bigger with
IoT than with traditional desktops, laptops, or smart-
phones. This inherent heterogeneity requires testing a

10	 IEEE Security & Privacy� January/February 2016

SOFTWARE EVERYWHERE

wide range of IoT application platforms and associated
tools. Unfortunately, many organizations don’t have
sufficient resources to perform the required testing or
to keep their testing current. However, practical assur-
ance approaches addressing this resource problem have
been developed: distributed frameworks allowing geo-
graphically separated par-
ties to cooperate on
testing are becoming
available, providing
a full complement
of shared testing
resources to reduce
cost and testing
time.13,14 Test frame-
works allow components owned by multiple coop-
erating organizations to communicate as if they were
adjacent, making it possible to test complex interactions
and interoperability among various IoT devices.

IoT testing is further complicated by the increased
number of interacting devices. Most IoT devices exist
to send and receive data, and the number of potential
communicating pairs increases with the square of the
number of devices. Furthermore, many interactions will
involve more than just two IoT devices exchanging data,
so interoperability testing must consider huge numbers
of combinations. Fortunately, combinatorial test meth-
ods from the experimental design field allow compres-
sion of huge numbers of configuration settings or input
variable values into a few tests. These methods could
be highly effective for IoT, where component interac-
tions are especially critical.15,16 Another approach is to
use models based on interoperability patterns.17 Such
model-based testing takes advantage of similarities in
architecture and behavior for systems in different IoT
application domains. Despite these advances, finding
ways to provide appropriate assurance levels for the
incredibly diverse IoT domain remains a significant
research challenge.

O ur foray into assembling IoT systems using inex-
pensive and readily available modules to create

appealing, practical use cases suggests that IoT secu-
rity and privacy aren’t always well defined or under-
stood by consumers and manufacturers. Specifically,
we demonstrated that some IoT implementations can
lead to inadvertent tracking of user identity and behav-
ior if data isn’t classified as sensitive and if devices aren’t
built with privacy as a design tenet. We also showed that
data encryption isn’t always enabled, and even when
it is, the cryptographic libraries might exhibit security
flaws that expose the data. Finally, we determined that
some IoT systems suffer from the isolation syndrome

of embedded devices: weak protocols and practices are
sometimes used because some IoT technologies were
designed for closed, non-Internet use with proprietary
code and no thorough software testing.

Usability and interoperability are important design
drivers for IoT manufacturers. It seems prudent to

avoid past mistakes and
elevate security and
privacy as design
tenets. There are rela-
tively few standards
or best practices for
IoT security design
and testing, although
some related guid-

ance is being developed by the Cyber-Physical Systems
Public Working Group18 and in documents such as
the National Institute of Standards and Technology’s
Guidelines for Smart Grid Cyber Security.19 We believe
that standards bodies and industry experts must begin
formulating suitable guidance and identifying the right
security and privacy primitives. Beginning to identify
IoT security and privacy requirements will open many
research challenges—challenges that will continue
to grow as IoT applications become part of our daily
lives. Indeed, IoT was introduced more than 15 years
ago, yet no thorough research has identified IoT-spe-
cific vulnerabilities and compared them with non-IoT
vulnerabilities. Although individual IoT technologies
have been studied recently, much work remains to fully
describe different IoT systems’ behavior when under
attack.

Disclaimer
Certain products are identified in this document to describe
the work conducted, but identification doesn’t imply that the
National Institute of Standards and Technology recommends
or endorses these products or that the products are necessarily
the best available for the purpose.

References
1.	 J. Rivera, “Gartner Says 4.9 Billion Connected ‘Things’

Will Be in Use in 2015,” Gartner, 11 Nov. 2014; www
.gartner.com/newsroom/id/2905717.

2.	 X. Teng, J.B. Wendt, and M. Potkonjak, “Security of IoT
Systems: Design Challenges and Opportunities,” Proc.
IEEE/ACM Int’l Conf. Computer-Aided Design (ICCAD
14), 2014, pp. 417–423.

3.	 J. Pescatore, Securing the Internet of Things Sur-
vey, white paper, SANS Inst., Jan. 2014; www
. s a n s .o r g / r e a d i n g - r o o m / w h i te p a p e r s / a n a l y s t
/securing-internet-things-survey-34785.

4.	 Z. Shelby, K. Hartke, and C. Bormann, “The Constrained
Application Protocol (CoAP),” Internet Engineering Task

Standards bodies and industry experts
must begin formulating suitable

guidance and identifying the right
security and privacy primitives.

www.computer.org/security� 11

Force, June 2014; https://tools.ietf.org/html/rfc7252.
5.	 E. Kim, D. Kaspar, and J. Vasseur, “Design and Applica-

tion Spaces for IPv6 over Low-Power Wireless Personal
Area Networks (6LoWPANs),” Internet Engineering Task
Force, Apr. 2012; https://tools.ietf.org/html/rfc6568.

6.	 “Indoor Location in Retail: Where Is the Money?,” ABIre-
search, Feb. 2013; www.abiresearch.com/market-research
/product/1013925-indoor-location-in-retail-where-is
-the-mon.

7.	 S. Lester, “The Emergence of Bluetooth Low Energy,”
Context, 21 May 2015; www.contextis.com/resources
/blog/emergence-bluetooth-low-energy.

8.	 C. Kolias et al., ”Intrusion Detection in 802.11 Net-
works: Empirical Evaluation of Threats and a Public Data-
set,” IEEE Communications Surveys & Tutorials, vol. PP,
no. 99, 2015.

9.	 E. Yuksel, H. Nielson, and F. Nielson, “Zigbee-2007 Secu-
rity Essentials,” Proc. 13th Nordic Workshop on Secure IT
Systems (NordSec 08), 2008, pp. 65–82.

10.	 N. Dhanjani, Abusing the Internet of Things: Blackouts,
Freakouts, and Stakeouts, O’Reilly Media, 2015.

11.	 “Internet of Things Top Ten,” Open Web Application
Security Project, 2014; www.owasp.org/images/7/71
/Internet_of_Things_Top_Ten_2014-OWASP.pdf.

12.	 A. Ardiri, “Is It Possible to Secure Micro-Controllers Used
within IoT?” Evothings, 27 Aug. 2014; https://evothings
.com/is-it-possible-to-secure-micro-controllers-used
-within-iot.

13.	 P. Rosenkranz et al., “A Distributed Test System Architec-
ture for Open-Source IoT Software,” Proc. Workshop IoT
Challenges in Mobile and Industrial Systems (IoT-Sys 15),
2015, pp. 43–48.

14.	 A. Lahmadi, C. Brandin, and O. Festor, “A Testing Frame-
work for Discovering Vulnerabilities in 6LoWPAN Net-
works,” Proc. IEEE 8th Int’l Conf. Distributed Computing in
Sensor Systems (DCOSS 12), 2012, pp. 335–340.

15.	 A.H. Patil, N. Goveas, and K. Rangarajan, “Test Suite
Design Methodology Using Combinatorial Approach for
Internet of Things Operating Systems,” J. Software Eng.
Applications, vol. 8, no. 7, 2015, p. 303.

16.	 G. Dhadyalla, N. Kumari, and T. Snell, “Combinatorial
Testing for an Automotive Hybrid Electric Vehicle Con-
trol System: A Case Study,” Proc. IEEE 7th Int’l Conf.
Software Testing , Verification and Validation Workshops
(ICSTW 14), 2014, pp. 51–57.

17.	 P. Grace et al., “Taming the Interoperability Challenges of
Complex IoT Systems,” Proc. 1st ACM Workshop Middle-
ware for Context-Aware Applications in the IoT (M4IOT
14), 2014, pp. 1–6.

18.	 “Cyber-Physical Systems Public Working Group,”
National Inst. Standards and Technology, 11 Aug. 2014;
www.nist.gov/cps/cps-pwg-workshop.cfm.

19.	 Guidelines for Smart Grid Cyber Security, tech. report
NISTIR 7628 Revision 1, National Inst. Standards

and Technology, Sept. 2014; http://nvlpubs.nist.gov
/nistpubs/ir/2014/NIST.IR.7628r1.pdf.

Constantinos Kolias is a research assistant professor
at George Mason University. His research interests
include security for 4G/5G communication proto-
cols, wireless intrusion detection, and Internet of
Things (IoT) and machine to machine security. Kolias
received a PhD in computer science from the Univer-
sity of the Aegean. Contact him at kkolias@gmu.edu.

Angelos Stavrou is an associate professor of computer
science and director of the Center for Assurance
Research and Engineering at George Mason Univer-
sity. His research interests include large systems secu-
rity and survivability, intrusion detection systems,
privacy and anonymity, and mobile ad hoc network
and mobile device security. Stavrou received a PhD in
computer science from Columbia University. Contact
him at astavrou@gmu.edu.

Jeffrey Voas is a computer scientist at the National
Institute of Standards and Technology (NIST). His
research interests include IoT and fundamental com-
puter science shortcomings. Voas received a PhD in
computer science from the College of William and
Mary. He is a Fellow of IEEE and the American Asso-
ciation for the Advancement of Science. Contact him
at j.voas@ieee.org.

Irena Bojanova is a computer scientist at NIST. Her
research interests include IoT, distributed systems,
and formal methods. Bojanova received a PhD in
computer science from the Bulgarian Academy of
Sciences. She is a Senior Member of IEEE and serves
as the Integrity Chair of the IEEE Computer Society
Publications Board. Contact her at irena.bojanova
@computer.org or irena.bojanova@nist.gov.

Richard Kuhn is a computer scientist at NIST. His
research interests include combinatorial methods
in software testing and access control models. Kuhn
received an MS in computer science from the Univer-
sity of Maryland, College Park. He is a Senior Mem-
ber of IEEE. Contact him at kuhn@nist.gov.

Selected CS articles and columns are also available for free
at http://ComputingNow.computer.org.

